View this page in: English | Español
La audición es compleja y requiere de una serie de acciones y reacciones para funcionar. El proceso implica que muchas partes del oído trabajen juntas para convertir las ondas sonoras en información que el cerebro comprende e interpreta.
Las ondas sonoras ingresan al canal auditivo y viajan hacia nuestros tímpanos.
Las ondas sonoras hacen que vibren el tímpano y los huesos del oído medio.
Pequeñas células ciliadas dentro de la cóclea, el órgano sensorial del oído, convierten estas vibraciones en impulsos eléctricos que son captados por el nervio auditivo.
Al nacer, cada oído típico tiene alrededor de 12.000 células sensoriales, llamadas células ciliadas, que se asientan sobre una membrana que vibra en respuesta al sonido entrante. Cada frecuencia de un sonido complejo hace vibrar al máximo la membrana en una ubicación determinada. Debido a este mecanismo, escuchamos diferentes tonos dentro del sonido. Un sonido más fuerte aumenta la amplitud de la vibración, por eso escuchamos el volumen más alto.
Las señales enviadas al cerebro desde el nervio auditivo se interpretan como sonidos.
Cómo funciona la audición (tiene disponible subtitulado en español)
Una vez que las células ciliadas del oído interno se dañan, se produce una pérdida auditiva neurosensorial permanente.
Actualmente, la pérdida auditiva neurosensorial no se puede restaurar en humanos, pero los investigadores de la HHF están trabajando para comprender mejor los mecanismos de la pérdida auditiva, y así encontrar mejores tratamientos y curas.
Traducción al español realizada por Julio Flores-Alberca, enero 2024. Sepa más aquí.
More Resources
As someone hard of hearing, I intimately understand the challenges of a world not always designed for me. This drives my mission to advocate for better access and representation.
While significant challenges remain, ongoing efforts in genetic research, immunology, and clinical trials offer hope for better management and potential cures for Ménière’s disease in the future.
Because of the increased network depth, upscaled input resolution, and the ability to perform well in a limited data setting, our new imaging model aided by machine learning outperformed previous state-of-the-art models predicting cochlear implant success outcomes.
Even though I may not hear every note perfectly, playing in a band has been a powerful experience. I connect with music not just through the sound of my trumpet but through feeling, vibration, and the very essence of music itself.
As always we are so thrilled to meet and catch up with our funded scientists, past and present, at this important research conference.
“Mara Hears in Style” is the book I wish my three children had when they were young and newly diagnosed with hearing loss. I wrote the book so that children who wear hearing aids will see themselves in a book and be seen, but I also wanted Mara's character to be relatable to all children.
Despite challenges, the potential of machine learning to improve cochlear implant outcomes is clear. By refining models, improving data quality, and addressing ethical concerns, we can move toward a future where CIs are more personalized and effective.
The impact of noise on hearing depends on both volume and duration. The louder the noise, the faster it can cause damage.
This research shows that it is possible to design gene therapies for the ear that are carefully targeted at supporting cells, an essential first step in applying targeted gene therapies to treat hearing loss in humans.
Our friends at Help America Hear want to share that their high school scholarship competition is open for high school seniors with hearing loss using hearing aids, cochlear implants, or bone anchored hearing aids. The essay application is due March 30.
One cost assessment method that has been increasingly used in medical literature is called “time-driven activity-based costing.” TDABC allows for a detailed step-by-step analysis of a process and its costs, which helps identify opportunities for reducing unnecessary costs and streamlining the process.
In audiology, we describe listening environments using the signal-to-noise ratio (SNR). The signal is what you want to hear—like your conversation partner—and noise is everything you don’t want to hear.