View this page in: English | Español
La audición es compleja y requiere de una serie de acciones y reacciones para funcionar. El proceso implica que muchas partes del oído trabajen juntas para convertir las ondas sonoras en información que el cerebro comprende e interpreta.
Las ondas sonoras ingresan al canal auditivo y viajan hacia nuestros tímpanos.
Las ondas sonoras hacen que vibren el tímpano y los huesos del oído medio.
Pequeñas células ciliadas dentro de la cóclea, el órgano sensorial del oído, convierten estas vibraciones en impulsos eléctricos que son captados por el nervio auditivo.
Al nacer, cada oído típico tiene alrededor de 12.000 células sensoriales, llamadas células ciliadas, que se asientan sobre una membrana que vibra en respuesta al sonido entrante. Cada frecuencia de un sonido complejo hace vibrar al máximo la membrana en una ubicación determinada. Debido a este mecanismo, escuchamos diferentes tonos dentro del sonido. Un sonido más fuerte aumenta la amplitud de la vibración, por eso escuchamos el volumen más alto.
Las señales enviadas al cerebro desde el nervio auditivo se interpretan como sonidos.
Cómo funciona la audición (tiene disponible subtitulado en español)
Una vez que las células ciliadas del oído interno se dañan, se produce una pérdida auditiva neurosensorial permanente.
Actualmente, la pérdida auditiva neurosensorial no se puede restaurar en humanos, pero los investigadores de la HHF están trabajando para comprender mejor los mecanismos de la pérdida auditiva, y así encontrar mejores tratamientos y curas.
Traducción al español realizada por Julio Flores-Alberca, enero 2024. Sepa más aquí.
More Resources
Living without the sense of hearing may bring barriers, but it does not mean living without independence or success. Our role, as people with typical hearing, is to listen, support, and work to improve the systems that are built around us.
This study shows that a single variant in the Foxg1 gene can affect how the brain processes sounds and lead to a heightened sensitivity to noise.
At the time of his death, Hudspeth was pursuing new approaches to restoring hearing through hair cell regeneration, and his lab had recently published work demonstrating the first method for keeping a mammalian cochlea alive outside of the body—an innovation that will provide future researchers with an unprecedented means for studying the cochlea’s live biomechanics.
While the cochlear implant was mapped to set sound frequencies, I heard a soft, staticky noise. I later learned I was hearing a rain downpour and thunder coming from outside the clinic.
Research has not yet fully explained the mechanisms behind efficient hair cell regeneration in birds, but recent discoveries have sparked multiple promising research directions that might bring us closer to developing treatments for humans.
For someone with a hidden disability, being held to standards of behavior that you cannot meet simply because someone cannot see your disability is a constant challenge.
Multiple key guitars from Les Paul’s collection are in The Les Paul House of Sound. Hands-on activities guide visitors to explore the science of sound.
A recent study has confirmed what we always knew: Men don’t listen in the same way women do—but not for the reasons many of us think.
It’s ironic and puzzling that when going to hearing clinics, patients who need help with their hearing have to somehow hear and respond to staff.
Two people have the same audiogram results but one can follow conversations at a loud party, while the other feels completely lost and overwhelmed. We set out to examine why.
I had been a crewman on a destroyer and as I recall was never offered hearing protection during live firing. Naval guns are big and loud! After Covid I noticed difficulty understanding my patients, even with prescription hearing aids.
My focus is studying pathologies following noise overexposure. This includes noise-induced hearing loss and pain hyperacusis. I specifically look at how the immune system interacts with the neurons of the ear after noise.