Research

Unraveling Genes Critical for Inner Ear Development

By Albert Edge, Ph.D., and Alain Dabdoub, Ph.D

The goal of the Hearing Restoration Project (HRP) is to determine how to regenerate inner ear sensory cells in humans to eventually restore hearing for millions of people worldwide. These sensory cells, called hair cells, in the cochlea detect and turn sound waves into electrical impulses that are sent to the brain. Once hair cells are damaged or die, hearing is impaired, but in most species, hair cells spontaneously regrow and hearing is restored. The HRP is aiming to enable this ability in humans. 

All cells develop through a chain of events triggered by chemical signals (proteins) from outside the cell. The signals kick off responses inside the cell that can change the cell’s ability to proliferate (grow and divide) and differentiate (take on specialized functions).

The Wnt signaling pathway, a sequence of events triggered by the Wnt protein, helps guide inner ear cell development, including the proliferation of cells that differentiate into the hair cells and supporting cells necessary for hearing and balance. But in mice and other mammals, inner ear cell proliferation does not continue past newborn stages.

Underscoring their importance in evolutionary terms, Wnt signals occur across species, from fruit flies to humans—the “W” in Wnt refers to “wingless”—and Wnt signaling is guided by dozens of genes. Albert Edge, Ph.D., Alain Dabdoub, Ph.D., and colleagues performed a comprehensive screen of 84 Wnt signaling-related genes and identified 72 that are expressed (turned on) during mouse inner ear development and maturation. Their results appeared in the journal PLoS One this February.

The Wnt signaling network has three primary pathways. Two are known to be integral to the formation of the mammalian inner ear, including the determination of a cell’s “fate,” or what type of cell it ultimately turns into. This is particularly significant because the inner ear’s sensory epithelium tissue is a highly organized structure with specific numbers and types of cells in an exact order. The precise arrangement and number of hair cells and supporting cells is essential for optimal hearing.

The relationship between the Wnt-related genes, the timing of their expression, and the various signaling pathways that act on inner ear cells is extremely complex. For instance, the composition of components inside a cell in addition to the cell’s context (which tissue the cell is in, and the tissue’s stage of development) will influence which pathway Wnt signaling will take. It is known that inhibiting the action of Wnt signaling causes hair cells to fail to differentiate.

 

The new research complements previous chicken inner ear studies of Wnt-related genes as well as a recent single-cell analysis of the newborn sensory epithelium in mice (conducted by HRP scientist Stefan Heller, Ph.D., and colleagues). Comprehensively detailing these 72 Wnt-related genes in the mouse cochlea across four developmental and postnatal time periods provides a deeper understanding of a critical component of hair cell development, bringing the HRP closer to identifying genes for their potential in hair cell regeneration.

Your Support Is Needed!

Hair cell regeneration is a plausible goal for eventual treatment of hearing and balance disorders.

The question is not if we will regenerate hair cells in humans, but when.  

However, we need your support to continue this vital research and find a cure!

Please make your gift today.  

Print Friendly and PDF

BLOG ARCHIVE

Are Hair Cell Regeneration Genes Blocked?

By Yishane Lee

On March 8, 2016, Hearing Health Foundation hosted a live-video research briefing, as part of an ongoing effort to provide regular updates on our research programs and progress. Through these briefings, our goal is for our attendees to learn new information and achieve a greater understanding of hearing loss, prevention, and to o develop effective therapies for hearing loss and tinnitus.

Peter Barr-Gillespie, Ph.D., the scientific director of the Hearing Restoration Project (HRP), began the webinar with announcing the newest HRP consortium member, Ronna Hertzano, M.D., Ph.D., from the University of Maryland. Ronna is a clinician as well as a research scientist, a rare combination and an asset for the HRP. She also developed a bioinformatics platform, gEAR, that the HRP is using to efficiently compare large, complex genetic datasets between species.

Dr. Barr-Gillespie went on to outline a year in the life of the HRP—how the investigators collaborate, discuss, and develop research projects. He then provided an overview of a currently funded project focused on examining whether genes can be manipulated to overcome a block to hair cell regeneration in mammals, including humans. The advancements in technologies, such as CRISPR gene modification, provides the HRP with the ability to study hair cell regeneration in different species and at a level of detail and manipulation unheard of before.

We invite you to watch the video with captioning, or read the presentation with summary notes. We are excited to share this discussion of the HRP’s progress to date and our plans for 2016 and beyond.

 

Your Support Is Needed!

Hair cell regeneration is a plausible goal for eventual treatment of hearing and balance disorders.

The question is not if we will regenerate hair cells in humans, but when.  

However, we need your support to continue this vital research and find a cure!

Please make your gift today.

Print Friendly and PDF

BLOG ARCHIVE

Defining Auditory-Visual Objects

By Molly McElroy, PhD

If you've ever been to a crowded bar, you may notice that it's easier to hear your friend if you watch his face and mouth movements. And if you want to pick out the melody of the first violin in a string quartet, it helps to watch the strokes of the players' bow.

I-LABS faculty member Adrian KC Lee and co-authors use these examples to illustrate auditory-visual objects, the topic of the researchers' recently published opinion paper in the prestigious journal Trends in Neurosciences.

Lee, who is an associate professor in the UW Department of Speech & Hearing Sciences, studies brain mechanisms that underlie hearing. With an engineering background, Lee is particularly interested in understanding how to improve hearing prosthetics.

Previous I-LABS research has shown that audio-visual processing is evident as early as 18 weeks of age, suggesting it is a fundamental part of how the human brain processes speech. Those findings, published in 1982 by the journal Science, showed that infants understand the correspondence between sight and the sound of language movements.

In the new paper, Lee and co-authors Jennifer Bizley, of University College London, and Ross Maddox, of I-LABS, discuss how the brain integrates auditory and visual information—a type of multisensory processing that has been referred to by various terms but with no clear delineation.

The researchers wrote the paper to provide their field with a more standard nomenclature for what an audio-visual object is and give experimental paradigms for testing it.

“That we combine sounds and visual stimuli in our brains is typically taken for granted, but the specifics of how we do that aren’t really known," said Maddox, a postdoctoral researcher working with Lee. “Before we can figure that out we need a common framework for talking about these issues. That’s what we hoped to provide in this piece.”

Trends in Neurosciences is a leading peer-reviewed journal that publishes articles it invites from leading experts in the field and focuses on topics that are of current interest or under debate in the neuroscience field.

Multisensory, especially audio-visual, work is of importance for several reasons, Maddox said. Being able to see someone talking offers huge performance improvements, which is relevant to making hearing aids that take visual information into account and in studying how people with developmental disorders like autism spectrum disorders or central auditory processing disorders (CAPD) may combine audio-visual information differently.

"The issues are debated because we think studying audio-visual phenomena would benefit from new paradigms, and here we hoped to lay out a framework for those paradigms based on hypotheses of how the brain functions," Maddox said.

Read the full paper onlineThis article was republished with permission of the Institute for Learning & Brain Sciences at the University of Washington

Ross Maddox, Ph.D. was a 2013 General Grand Chapter Royal Arch Masons International award recipient. Hearing Health Foundation would like to thank the Royal Arch Masons for their generous contributions to Emerging Research Grantees working in the area of central auditory processing disorders (CAPD). We appreciate their ongoing commitment to funding CAPD research.

We need your help supporting innovative hearing and balance science through our Emerging Research Grants program. Please make a contribution today.

 
 
Print Friendly and PDF

BLOG ARCHIVE

Engineering Music to Sound Better With Cochlear Implants

By Columbia University Medical Center

When hearing loss becomes so severe that hearing aids no longer help, a cochlear implant not only amplifies sounds but also lets people hear speech clearly.

Music is a different story.

“I’ve pretty much given up listening to music and being able to enjoy it,” says Prudence Garcia-Renart, a musician who gave up playing the piano a few years ago.

“I’ve had the implant for 15 years now and it has done so much for me. Before I got the implant, I was working but I could not use a phone, I needed somebody to take notes for me at meetings, and I couldn’t have conversations with more than one person. I can now use a phone, I recognize people’s voices, I go to films, but music is awful.”

Cochlear implants are designed to process speech, which is a much simpler auditory signal compared with music. People with severe hearing loss also have lost auditory neurons that transmit signals to the brain.

It’s not possible to tweak the settings of the implant to compensate for the loss of auditory neurons, says Anil Lalwani, MD, director of the Columbia Cochlear Implant Program. “It’s unrealistic to expect people with that kind of nerve loss to process the complexity of a symphony, even with an implant.”

Instead, Dr. Lalwani and members of Columbia’s Cochlear Implant Music Engineering Group is trying to reengineer and simplify music to be more enjoyable for listeners with cochlear implants. “You don’t necessarily need the entire piece to enjoy the music,” Dr. Lalwani says. “Even though a song may have very complex layers, you can sometimes just enjoy the vocals, or you can just enjoy the instruments.”

Right now the group is testing different arrangements of musical compositions to learn which parts of the music are most important for listener enjoyment. “It’s not the same for somebody who has normal hearing,” Dr. Lalwani says, “and that’s what we have to learn.”

Down the road, Dr. Lalwani thinks software will be able to take an original piece of music and reconfigure it for listeners or give the listener the ability to engineer their own music.

“Our eventual goal, though, is to compose music for people with cochlear implants based on what we’ve learned,” Dr. Lalwani says. “Original pieces of music that will possibly have less rhythmic instruments, less reverb, possibly more vocals—something that is actually designed for them.”

The study is titled, “Music Engineering as a Novel Strategy for Enhancing Music Enjoyment in the Cochlear Implant Recipient.” The other contributors are: Gavriel D. Kohlberg, Dean M. Mancuso, and Divya A. Chari.

This blog was reposted with the permission of Columbia University Medical Center

Anil K. Lalwani, M.D. is the Head of Hearing Health Foundation's Council of Scientific Trustees.

Print Friendly and PDF

BLOG ARCHIVE

Special Request for Meniere's Disease & Stria Vascularis Applications

By Laura Friedman

Thanks to generous donations, Hearing Health Foundation is requesting Emerging Research Grants (ERG) proposals in the areas of:

  • Ménière's disease, for innovative research that will increase our understanding of the inner ear and balance disorder.

  • Stria vascularis, for research that will increase our understanding of strial atrophy and/or development of the stria.

Letters of intents (LOIs) are required before a full application can be submitted. Full applications are due Thursday, March 31. 


Please review our Policy on Emerging Research Grants for eligibility requirements. If you are eligible, please make note of the deadlines below and review the instructions for submitting a LOI.

Deadlines:

  • Full Application: March 31, 2016

  • Award Notification: Spring 2016

  • Grant Period: July 1, 2016 - June 30, 2017

If you have any questions about the ERG program and process, please contact us at grants@hhf.org

Thank you for your interest in the ERG program. Please forward and share this information with your colleagues. 

We need your help in funding the exciting work of hearing and balance scientists.
To donate today to support HHF's groundbreaking research,

please visit hhf.org/name-a-grant.

Print Friendly and PDF

BLOG ARCHIVE

Hearing Loss vs. Dizziness: If I Could Choose!

By John V. Brigande, Ph.D.

I was about 9 when hearing loss in my left ear was first detected. The audiologist explained to me that as a result, I may not be able to hear birds singing as easily, and that I may need to concentrate more to understand words starting with “sh,” “k,” or “t.” Sensing my alarm, she tried to reassure me by saying it was unlikely that the hearing loss would affect both ears, and if it did, it would likely not be to the same extent.


Managing the loss of a primary sense is all about adaptation. In grade school, I simply tilted my right ear toward sound sources. Over time my hearing loss became bilateral and progressive, and its cause remains unknown. In graduate school I began using hearing aids and later received a cochlear implant in my left ear. I continue to use a hearing aid in my right ear, and thankfully for the past eight years, my hearing has remained stable, if stably poor.


I have always compensated. At Boston College (where I received my undergraduate, Master’s, and Ph.D., all in the biological sciences) I sat in the front seat of my classes, as close to the speaker as possible. I asked my professors and classmates to face me when they spoke so I could use visual cues to enhance oral comprehension. During postdoctoral training in auditory neuroscience at Purdue University, I was given complimentary assistive listening technology upon my arrival to the lab.


While I do not consider my hearing loss to be a profound limitation personally or professionally, it has certainly sculpted my career path. When picking my area of scientific focus, I settled on a career in auditory neuroscience to better understand hearing loss.


I also reasoned that the auditory research conferences and meetings I’d be attending would likely have assistive listening technology to allow me to participate more fully. I have benefited immeasurably from the scientific community that makes up the Association for Research in Otolaryngology, whose meetings have world-class assistive listening technologies and interpreter services plus overwhelming support of members who have hearing loss.


As I entered my 40s, I experienced vertigo for the first time. The clinical data do not fit with a diagnosis of Ménière’s disease, and the link between my vertigo and hearing loss is unclear.


When I have an acute attack of dizziness, my visual field scrolls from right to left very quickly so that I must close my eyes to avoid profound motion sickness and vomiting. I must lie down until the dizziness subsides, which is usually 12 to 16 hours. I honestly cannot do anything—I can only hope to fall asleep quickly.


Vertigo is a profound limitation for me. With no disrespect or insensitivity intended toward the hearing impaired community—of which I am a passionate member—I would take hearing loss over vertigo in a heartbeat. Dizziness incapacitates me, and I cannot be an effective researcher, educator, husband, or father. Some people perceive an aura before their dizziness occurs, but I do not get any advance warning. Unlike hearing loss, I cannot manage my dizziness—it takes hold and lets go when it wants to.


I recall one episode especially vividly. I was invited to give a seminar at the National Institute on Deafness and Other Disorders (NIDCD) and experienced a severe attack just hours before my flight. Vertigo forced me to reschedule my visit, which was tremendously frustrating. That night, I slept in the bathroom (my best solution when vertigo hits). Vestibular (balance) dysfunction is quite simply a game changer.   


A satisfying part of my research involves trying to define treatments for hearing loss and dizziness. Usher syndrome is a condition combining hearing, balance, and vision disorders. In Usher syndrome type 1, infants are born deaf and have severe vestibular problems; vision abnormalities appear by around age 10. In working with a group of dedicated colleagues at various institutions, we have evidence that fetal administration of a drug in mice with Usher syndrome type 1 can prevent balance abnormalities.


As part of HHF’s Hearing Restoration Project (HRP) consortium, I have been working on testing gene candidates in mice for their ability to trigger hair cell regeneration. This research is exciting as it is leading the HRP into phase 2 of its strategic plan, with phase 3 involving further testing for drug therapies. The probability is that manipulating a single gene will not provide lasting hearing restoration, and that we will need to figure out how to manipulate multiple genes in concert to achieve the best therapeutic outcomes.
It is an exciting time to be a neuroscientist interested in trying to find ways to help patients with hearing loss and balance issues. I am hopeful that we will make progress in defining new ways to treat and even prevent vertigo in the near future and ultimately to discover a cure for hearing loss and tinnitus.

Hearing Restoration Project consortium member John V. Brigande, Ph.D., is a developmental neurobiologist at the Oregon Hearing Research Center. He also teaches in the Neuroscience Graduate Program and in the Program in Molecular and Cellular Biology at the Oregon Health & Science University.

Your financial support will help ensure we can continue this vital research in order to find a cure for hearing loss and tinnitus in our lifetime. Please donate today to fund the top scientific minds working collaboratively toward a common goal.For more information or to make a donation, email us at development@hhf.org

Your help provides hope.

Print Friendly and PDF

BLOG ARCHIVE

New Mexico State University (NMSU) professor receives prestigious grant for research on children's hearing

By New Mexico State University NewsCenter

Srikanta Mishra, an assistant professor in the New Mexico State University College of Education’s Department of Special Education and Communication Disorders, and 2014 Emerging Research Grantee, recently received a prestigious research grant to study hearing mechanisms in children.

The R03 grant from the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health is the college’s first NIH grant, which is known to be highly competitive and supports outstanding research. It provides a total amount of $438,000 for three years.

Mishra said the grant signifies the research capacity of the Department of Special Education and Communication Disorders, and showcases the cutting-edge hearing health research conducted at NMSU.

The project will investigate auditory mechanisms in children, particularly how the descending hearing pathway works in children.

“The descending efferent neural pathway runs from the brain to the inner ear. The results of this project will help us understand the role of the efferent system in auditory perception during childhood development,” Mishra said. “The knowledge gained from this project can be applied to develop tools to identify children at risk for auditory deficits and guide intervention efforts for children with listening problems.”

Mishra called the grant “one of the major the pinnacles of my academic career thus far. This will also expose NMSU students from minority and underprivileged backgrounds to high-quality health research.”

Robert Wood, interim academic head of the Department of Special Education and Communication Disorders, called Mishra’s research “critical” to both NMSU and audiology in general.

“First, and most importantly, his work has the potential to advance the field of audiology, which is why the National Institutes for Health is funding the work,” Wood said. “In addition to that, this funded project is really the first of its kind here at NMSU, and this will put the Department of Special Education and Communication Disorders as well as the College of Education on the map with federal funding agencies and in the field of audiology. This is a very big deal for us and for NMSU.”

Mishra earned his doctorate in audiology from the University of Southampton, England. He completed his postdoctoral fellowship at the House Ear Institute in Los Angeles. Mishra holds a clinical competence certificate in audiology from the American Speech Language & Hearing Association and is a Fellow of the American Academy of Audiology. He also maintains a license as an audiologist in New Mexico.

In the past, Mishra has also received funding from the Hearing Health Foundation to support his research in otoacoustic emissions and pediatric audiology. Mishra serves on review panel for several scientific journals in audiology and hearing sciences and also serves on a NIH study section. For his editorial contributions, he received the 2013 Journal of the American Academy of Audiology Editor’s Award.

Information from NMSU.

We need your help supporting innovative hearing and balance science through our Emerging Research Grants program. Please make a contribution today.

 
 
Print Friendly and PDF

BLOG ARCHIVE

Professor seeks to improve diagnosis process of Meniere's disease

Dr. Wafaa Kaf, professor of audiology, has spent many of her 10 years at Missouri State researching ways to evaluate the hearing of these challenging populations.


Vertigo, dizziness, a sense of ear fullness and ringing in the ears are all symptoms for a variety of illnesses, like migraine. According to Dr. Wafaa Kaf, professor of audiology in the communication sciences and disorders department at Missouri State University, these symptoms may not immediately raise a red flag to a patient with Ménière's disease, and that’s one of the major challenges of this disease.

“There are two challenges with this disease,” said Kaf. “We can’t diagnose it as early as we want because current diagnosis is only based on clinical reports from the patient without the use of objective measures to confirm clinical diagnosis, and thus appropriate treatment isn’t offered soon enough. In addition, there is no known definite cause for it.”

According to Kaf, Ménière's disease is a common disease of the inner ear affecting adults in their fourth decade of life. The disease is believed to be due to an abnormal increase in the amount of the inner ear fluid. If left untreated, this progressive disease may lead to deafness.

Improving the diagnosis process

The current technique for objective diagnosis of Ménière's disease is Electrocochleography, but Kaf knows that it lacks sensitivity to accurately detect Ménière's disease in its early stage. She wants to improve the diagnosis process to understand the origin of the disease and its long-term effects.

Currently to test patients, an electrode is placed behind the ear and another in the ear canal. Clicking sounds will be presented to the patient’s ear via earphone and the system will record responses from the inner ear and the hearing nerve, which will be analyzed by an audiologist. The diagnosis is based on whether there is an abnormally large response from the inner ear compared to the hearing nerve response.

“My research is to modify the current technique to allow it to detect the disease earlier by presenting the click sounds at faster rates of up to 500 clicks per second,” said Kaf.

She explained that this increased speed is a stressor to the inner ear and the hearing nerve similar to a doctor putting a patient with heart condition on a treadmill while undergoing an echocardiogram (EKG). The stress during an EKG allows physicians to detect early dysfunction of the heart. In Kaf’s research, the modification to the current measure has the potential to detect Ménière's disease and distinguish it from other inner ear or nerve lesions.

Participate in the study

Kaf and her research team are recruiting people who have been recently diagnosed with Ménière's to participate in a three-hour long study, testing is being conducted at Dr. Kaf's lab at Missouri State University, Springfield, MO. Participants will be compensated $75 and will also receive free comprehensive hearing evaluations to assess hearing sensitivity and middle ear status as well as inner ear and nerve function using both the standard and the modified, experimental procedures.

To participate in the study, contact Kaf’s research assistant, Alana Kennedy, audiology doctoral student, at (417) 860-2556 or contact Kaf at (417) 836-4456 or via email wafaakaf@missouristate.edu.

Kaf has received generous funding for this research study from the Hearing Health Foundation.

Print Friendly and PDF

BLOG ARCHIVE

Spotlight On: Stefan Heller, Ph.D.

By Stefan Heller, Ph.D.

CURRENT INSTITUTION: 

Stanford University

EDUCATION:

Studied Biology at the University of Mainz, Germany

Ph.D. at the Max Planck Institute for Brain Research in Frankfurt, Germany

Postdoc at The Rockefeller University, New York, NY

Heller_Retreat_3_crop.jpg

We are grateful for your interest in Hearing Health Foundation (HHF). Through Spotlight On, HHF aims to connect our supporters and constituents to its Hearing Restoration Project (HRP) consortium researchers. We hope this feature helps you get to know the life and work of the leading researchers working collaboratively in pursuit of a cure for hearing loss and tinnitus

What is your area of focus? 

My laboratory seeks to understand how a small patch of embryonic cells forms the inner ear, particularly the sensory hair cells of the cochlea and vestibular organs. We are also very interested in the biology of supporting cells, which in chickens have the ability to regenerate lost hair cells. Another research interest of ours is the use of stem cells to generate inner ear cells “from scratch.”

Why did you decide to pursue scientific research? 

As a kid, I convinced my parents to buy me a chemistry lab kit. On numerous occasions the basement needed to be evacuated because of nasty fumes that filled the room. This experience probably gave me an edge when studying science in school, where I had encouraging teachers who inspired interest in neuroscience and genetics. I realized that science provides an endless playing field to connect basic discoveries to the development of useful applications.

Why hearing research? 

Serendipity! My Ph.D. thesis focused on how nerve cells are affected by so-called neurotrophic factors. This field of research was popular in the early 1990s because it promised to lead to cures for disorders such as ALS, Parkinson’s, and Alzheimer’s. With many researchers already working on finding cures for these conditions, I believed a cure was right around the corner and I’d be out of a job quickly. So I looked for a new challenge and found the laboratory of Jim Hudspeth, an HHF Emerging Research Grantee in 1979 and 1980, whose research focuses on inner ear hair cells. Five minutes with Jim and I was hooked.

What do you enjoy doing when not in the lab?

I enjoy renovating our family’s 65-year-old midcentury modern house one step at a time. After 10 years, I am about half done. I also enjoy camping trips with my wife and dog; we like hiking and being off the grid to recharge our batteries.

If you weren’t a scientist, what would you have done?

I’ve always felt that research is the best fit for me. I like modern architecture, and although I am not necessarily talented in drawing, I might have liked to do something in that field.

What do you find to be most inspirational?

Interacting with creative people and living in the Bay Area, a region where innovation is cherished and rewarded. All of my mentors have one important trait in common, and that is generosity. They were generous in volunteering their time to discuss wild ideas and scientific problems, giving me resources to explore and experiment. I try to apply this principle to my laboratory group as well.

Hearing Restoration Project

What has been a highlight from the HRP consortium collaboration?

The most valuable aspect of the HRP is that we get together as a group and talk about experiments, approaches, and the problems at hand. There are not many researchers focusing on hearing restoration, so bringing them together frequently is very helpful. We meet twice a year in person and once a month via conference calls, which is optimal for fruitful discussions. Having unlimited access to this talented group brings a lot of value.

How has the collaborative effort helped your research?

Without the HRP, I would not have started to focus on chicken hair cell regeneration. The collaborative approach, made possible through funding from HHF, has helped us to implement novel tools and the latest technology. Combining resources and technologies strengthens our research and expedites projects that help us reach our goal to find a cure for human hearing loss and tinnitus.

What do you hope to have happen with the HRP over the next year? Two years? Five years?

I envision that we will have started to fill in some of these missing components and that we have identified ways to reactivate hair cell regeneration in the mammalian cochlea. I also hope that people connected to the cause, such as individuals living with hearing loss and HHF’s generous supporters, remain patient, because science takes time in order to reach a desired result. We are working on a very complicated problem, and with each new discovery we find new roadblocks that need to be eliminated. I dream of the day when these roadblocks are all gone and we do not encounter new ones. This will be the day we realistically can expect a cure.

What is needed to help make HRP goals happen?

Ongoing funding. HHF is currently supporting research projects at a dozen laboratories, and increased funding per laboratory would allow for even more research to be conducted. HRP researchers benefit from sharing knowledge and small collaborations, but I feel that large-scale concerted efforts and sustained funding are essential to make the HRP’s goals a reality. Hopefully one of the currently funded, small-scale, concerted collaborations will lead to a “eureka” moment that will allow us to leapfrog directly to testing new drugs. Finally, patience is a must! Combined, all of the laboratories working on finding cures for hearing loss and tinnitus totals fewer than 500 researchers worldwide. It is a small field with limited resources, but I am very encouraged about the progress we’ve made so far.

Empower the Hearing Restoration Project's life-changing research. If you are able, please make a contribution today.

 
 
Print Friendly and PDF

BLOG ARCHIVE

Promoting Research to Improve Hearing Health - Seven Questions - ARMY Magazine - Dec 2015

Promoting Research to Improve Hearing Health

ClaireSchultzistheCEOofHearing Health Foundation (HHF), a 501(c)(3) tax- exempt organization committed to ensuring the public—especially service members, veterans and their families—have the opportunity to enjoy life without hearingloss and tinnitus.

  1. What is Hearing Health Foundation’s mission?

    HHF’s mission is to prevent and cure hearing loss and tinnitus through groundbreaking research, and to promotehearing health. Through our Hearing Restoration Project, we are working on a biological cure for hearing loss and tinnitus for millions of Americans—including hundreds of thousands of military service members and veterans.

  2. What military-specific initiatives has HHF worked on?

    In 2012, we joined the DoD’s Hearing Center of Excellence as a partner through general outreach, radio programs and co-authored articles. We share many of the same goals in raising awareness, providing resources and information, and continually improving the health and quality of life of service members and veterans.

    In 2014, HHF launched an online campaign geared toward veterans to provide information and resources about tinnitus treatments and the Hearing Restoration Project’s efforts, and including links to expert content in our magazine and to other hearing and veteran-related organizations and associations. [Visit http://hearinghealthfoundation.org/veterans.]

    Pharmaceutical intervention for hearing loss is a major research area for the military.

  3. Some military members feel hesitant about seeking treatment for hearing-related issues. What does HHF do to mitigate that stigma?

    Service members may feel stigmatized about seeking treatment for their hearing problems because there are many myths and misconceptions about people with hearing loss. At HHF, we provide factual information as well as resources to help reduce the stigma of hearing loss, and to encourage getting treatment as soon as possible.

  4. Do many service members regard hearing loss as a “badge of honor”?

    HHF has not heard this sentiment, but it is our hope that members of the military take every effort to prevent hearing loss while in the service, and to address any hearing issues they may have developed as soon as they are discovered. Untreated hearing loss can lead to many additional medical problems; for example, depression, isolation and dementia.

  5. Are more Iraq and Afghanistan veterans seeking hearing loss treatment?

    At least 60 percent of troops returning from Iraq and Afghanistanhave acquired hearing loss or tinnitus because of noise exposure during their service. According to the Hearing Center of Excellence, in the past decade, 840,000 service members have been diagnosed with tinnitus, and just over 700,000 have hearing loss.

  6. What are the most effective treatment options?

    Current treatments include hearing aids, cochlear implants and other devices. Treatments available for tinnitus include sound therapy, drug therapy, psychological interventions, brain stimulation and tinnitus retraining therapy, which is being tested through clinical trials at six flagship military treatment centers.

    A sequential program known as progressive tinnitus management has emerged as one of the most promising research-based methods. In order to help patients, it is necessary to mitigate the functional effects of tinnitus, such as difficulties with sleep, concentration and relaxation.

  7. How can service members prevent hearing loss?

Traditional earplugs are effective in preventing hazardous noise from entering the ear canal, but they can interfere with speech communication or low-level combat sounds. Level-dependent earplugs have a small filter that enables soft noises to be conveyed with full strength while eliminating high-frequency or impulse noise.


Earmuffs are another option. … They provide greater attenuation than earplugs [but] make it harder to pick up the softer sounds that may be necessary for verbal communication. An electronic communication system in the earmuff allows wearers to communicate clearly with each other.


Noise-attenuating helmets should be used by military personnel operating combat vehicles or aircraft. These helmets protect the wearer from hearing loss, crash impact and eye injuries while also increasing communication ability through a radio communication piece.
Technologically advanced helmets include an active noise-reducing technology that monitors the sound energy around the ear and cancels any unwanted noise while preserving verbal communications. A communications earplug with a microphone can be worn in addition to the helmet for high-quality verbal clarity.

—Thomas B. Spincic

Print Friendly and PDF

BLOG ARCHIVE