Central Auditory Processing Disorder

You Can Change Lives

By Nadine Dehgan

On behalf of folks like John—Thank you for your continued support of Hearing Health Foundation (HHF), the largest U.S. nonprofit funder of hearing loss and tinnitus research in America.

We are dedicated to discovering better treatments and permanent cures.

john eoy email portrait.png

John—a Retired U.S. Army Colonel—served during the Cold War. Constant exposure to gunfire and high-pitched helicopter engines took a toll on his hearing. He was diagnosed with tinnitus and hearing loss in 1996. His diagnosis fueled his desire to improve the lives of active duty personnel and veterans since.

Tragically, John's circumstances are not unique. Tinnitus is the most common physical ailment for returning military personnel, followed by hearing loss. 60% of Iraq and Afghanistan veterans suffer from one or both of these conditions.

Many Veterans, even those who pass their hearing test, have trouble understanding speech. This condition, known as auditory processing disorder, is often caused by blast exposure.

Today John teaches at the Naval Postgraduate school where he often counsels young military officers as they cope with their tinnitus, as tinnitus can cause significant sleep, concentration, and mood issues.

Can you help bring us closer to better treatments and cures for tinnitus for John and the 65 million other Americans with tinnitus, many of whom are also veterans? 


Print Friendly and PDF

New Clues to Sound Localization Issues in Fragile X Syndrome

By Pranav Parikh, Kathleen Wallace, and Elizabeth McCullagh, Ph.D.

Fragile X syndrome (FXS), the most common genetic form of autism, is characterized by impaired cognition, hyperactivity, seizures, attention deficits, and hypersensitivity to sensory stimuli, specifically auditory stimuli.

Individuals with FXS also experience difficulty with determining the source of a sound, known as sound localization. Sound localization is essential for listening in the presence of background noise such as a noisy classroom. The ability to localize sound properly is due to precise excitatory and inhibitory inputs to areas of the brain. 2016 Emerging Research Grants recipient Elizabeth McCullagh, Ph.D., and colleagues hypothesize that the auditory symptoms seen in FXS, specifically issues with sound localization, are due to an overall imbalance of excitatory and inhibitory synaptic input in these brain areas.

Elizabeth McCullagh.jpg

Investigators compared number and size of synaptic structures in different areas of the brainstem responsible for sound localization for several inhibitory neurotransmitters (glycine and GABA) and the primary excitatory neurotransmitter (glutamate) in a mouse model of FXS with a control group. The areas of the brainstem responsible for sound localization are connected to one another in a frequency-specific manner, with low frequency sounds stimulating similar areas and the same for high frequency. It was found that most areas of the brainstem examined did not have changes in number or size of structures, but one area—the medial nucleus of the trapezoid body (MNTB)—had alterations to inhibitory inputs that were specific to the frequency encoded by that region. Glycinergic inhibition was decreased in the high frequency region of MNTB, while GABAergic inhibition was decreased in the low frequency region.

The study by McCullagh and team in The Journal of Comparative Neurology is the first to explore alterations in glycinergic inhibition in the auditory brainstem of FXS mice. Due to the well-characterized functional roles of excitatory and inhibitory neurotransmitters in the auditory brainstem, the sound localization pathway is an ideal circuit to measure the sensory alterations of FXS. Given the findings in this study, further knowledge of the alterations in the lower auditory areas, such as the tonotopic differences in inhibition to the MNTB, may be necessary to better understand the altered sound processing found in those with FXS.

Elizabeth McCullagh, Ph.D., was a 2016 Emerging Research Grants scientist and a General Grand Chapter Royal Arch Masons International award recipient. For more, see Tonotopic alterations in inhibitory input to the medial nucleus of the trapezoid body in a mouse model of Fragile X syndrome” in The Journal of Comparative Neurology.

We need your help supporting innovative hearing and balance science through our Emerging Research Grants program. Please make a contribution today.

Print Friendly and PDF

Cortical Alpha Oscillations Predict Speech Intelligibility

By Andrew Dimitrijevic, Ph.D.

Hearing Health Foundation Emerging Research Grants recipient Andrew Dimitrijevic, Ph.D., and colleagues recently published “Cortical Alpha Oscillations Predict Speech Intelligibility” in the journal Frontiers in Human Neuroscience.

The scientists measured brain activity that originates from the cortex, known as alpha rhythms. Previous research has linked these rhythms to sensory processes involving working memory and attention, two crucial tasks for listening to speech in noise. However, no previous research has studied alpha rhythms directly during a clinical speech in noise perception task. The purpose of this study was to measure alpha rhythms during attentive listening in a commonly used speech-in-noise task, known as digits-in-nose (DiN), to better understand the neural processes associated with speech hearing in noise.

Fourteen typical-hearing young adult subjects performed the DiN test while wearing electrode caps to measure alpha rhythms. All subjects completed the task in active and passive listening conditions. The active condition mimicked attentive listening and asked the subject to repeat the digits heard in varying levels of background noise. In the passive condition, the subjects were instructed to ignore the digits and watch a movie of their choice, with captions and no audio.

Two key findings emerged from this study in regards to the influence of attention, individual variability, and predictability of correct recall.

First, the authors concluded that the active condition produced alpha rhythms, while passive listening yielded no such activity. Selective auditory attention can therefore be indexed through this measurement. This result also illustrates that these alpha rhythms arise from neural processes associated with selective attention, rather than from the physical characteristics of sound. To the authors’ knowledge, these differences between passive and active conditions have not previously been reported.

Secondly, all participants showed similar brain activation that predicted when one was going to make a mistake on the DiN task. Specifically, a greater magnitude in one particular aspect of alpha rhythms was found to correlate with comprehension; a larger magnitude on correct trials was observed relative to incorrect trials. This finding was consistent throughout the study and has great potential for clinical use.

Dimitrijevic and his colleagues’ novel findings propel the field’s understanding of the neural activity related to speech-in-noise tasks. It informs the assessment of clinical populations with speech in noise deficits, such as those with auditory neuropathy spectrum disorder or central auditory processing disorder (CAPD).

Future research will attempt to use this alpha rhythms paradigm in typically developing children and those with CAPD. Ultimately, the scientists hope to develop a clinical tool to better assess listening in a more real-world situation, such as in the presence of background noise, to augment traditional audiological testing.

Andrew Dimitrijevic, Ph.D., is a 2015 Emerging Research Grantee and General Grand Chapter Royal Arch Masons International award recipient. Hearing Health Foundation would like to thank the Royal Arch Masons for their generous contributions to Emerging Research Grants scientists working in the area of central auditory processing disorders (CAPD). We appreciate their ongoing commitment to funding CAPD research.

We need your help supporting innovative hearing and balance science through our Emerging Research Grants program. Please make a contribution today.

Print Friendly and PDF

Understanding Auditory Processing Disorder

 By Frankie Huang

April 4 is Auditory Processing Disorder Awareness Day and the Hearing Health Foundation is highlighting the effects and challenges associated with living with APD.

Auditory processing disorder (APD), also known as central auditory processing disorder (CAPD), is an auditory deficit affecting how the central nervous system interprets verbal information. Those living with APD show impairments in sound localization, specifically their ability to isolate a sound source in social environments.

Approximately 5% of school-age children have APD. Children with APD often are uncertain about what they hear and have difficulty listening in loud background noises as well as understanding rapid speech. Often distracted, they can struggle to keep up with conversations which impedes their ability to read, spell, and follow oral directions.

Researchers found a correlation between working memory capacity, which is the ability to retain and manipulate information, and speech development. They found that working memory capacity was significantly lower in children with APD and may be the cause of their inability to separate and group incoming information and, in turn, lead to poor speech perception in noisy environments.

Other researchers found that peripheral hearing loss may affect performance in certain APD tests in older adults. Older adults with mild to moderate hearing loss did significantly poorer on tests that require recalling words, identifying high and low tone patterns, and repeating short sentences.

Although APD can be difficult to diagnose, there are telltale signs: poor auditory memory, difficulty identifying sounds, and a delayed response to verbal requests and instructions. APD is sometimes misdiagnosed as ADD/ADHD or dyslexia, so if you suspect you or a loved one may have APD, it is advised that they go through an individual comprehensive assessment with an audiologist for a more accurate diagnosis.

It is important to understand that research is still needed to understand auditory processing disorders, accurate methodologies for diagnosis, and the best interventions for each child or adult. Even though there are available strategies to treat children with APD, researchers are hard at work finding alternative treatments that will improve the lives of those suffering from APD.

Learn about Hearing Health Foundation’s 2016 Emerging Research Grants recipients who are conducting research to improve the lives of those affected by APD. These grantees are General Grand Chapter Royal Arch Masons International award recipients and we are grateful to the Masons for their ongoing support.

Print Friendly and PDF

Neural sensitivity to binaural cues with bilateral cochlear implants

By Massachusetts Eye and Ear/Harvard Medical School

Many profoundly deaf people wearing cochlear implants (CIs) still face challenges in everyday situations, such as understanding conversations in noise. Even with CIs in both ears, they have difficulty making full use of subtle differences in the sounds reaching the two ears (interaural time difference, [ITD]) to identify where the sound is coming from. This problem is especially acute at the high stimulation rates used in clinical CI processors.

 A team of researchers from Massachusetts Eye and Ear/Harvard Medical School, including past funded Emerging Research Grantee, Yoojin Chung, Ph.D., studied how the neurons in the auditory midbrain encode binaural cues delivered by bilateral CIs in an animal model. They found that the majority of neurons in the auditory midbrain were sensitive to ITDs, however, their sensitivity degraded with increasing pulse rate. This degradation paralleled pulse-rate dependence of perceptual limits in human CI users.

This study provides a better understanding of neural mechanisms underlying the limitation of current clinical bilateral CIs and suggests directions for improvement such as delivering ITD information in low-rate pulse trains.

The full paper was published in The Journal of Neuroscience and is available here. This article was republished with permission of the Massachusetts Eye and Ear/Harvard Medical School.

Dr. Yoojin Chung, Ph.D. was a 2012 and 2013 General Grand Chapter Royal Arch Masons International award recipient through our Emerging Research Grants program. Hearing Health Foundation would like to thank the Royal Arch Masons for their generous contributions to Emerging Research Grantees working in the area of central auditory processing disorders (CAPD). We appreciate their ongoing commitment to funding CAPD research.

We need your help supporting innovative hearing and balance science through our Emerging Research Grants program. Please make a contribution today.

Print Friendly and PDF

Defining Auditory-Visual Objects

By Molly McElroy, PhD

If you've ever been to a crowded bar, you may notice that it's easier to hear your friend if you watch his face and mouth movements. And if you want to pick out the melody of the first violin in a string quartet, it helps to watch the strokes of the players' bow.

I-LABS faculty member Adrian KC Lee and co-authors use these examples to illustrate auditory-visual objects, the topic of the researchers' recently published opinion paper in the prestigious journal Trends in Neurosciences.

Lee, who is an associate professor in the UW Department of Speech & Hearing Sciences, studies brain mechanisms that underlie hearing. With an engineering background, Lee is particularly interested in understanding how to improve hearing prosthetics.

Previous I-LABS research has shown that audio-visual processing is evident as early as 18 weeks of age, suggesting it is a fundamental part of how the human brain processes speech. Those findings, published in 1982 by the journal Science, showed that infants understand the correspondence between sight and the sound of language movements.

In the new paper, Lee and co-authors Jennifer Bizley, of University College London, and Ross Maddox, of I-LABS, discuss how the brain integrates auditory and visual information—a type of multisensory processing that has been referred to by various terms but with no clear delineation.

The researchers wrote the paper to provide their field with a more standard nomenclature for what an audio-visual object is and give experimental paradigms for testing it.

“That we combine sounds and visual stimuli in our brains is typically taken for granted, but the specifics of how we do that aren’t really known," said Maddox, a postdoctoral researcher working with Lee. “Before we can figure that out we need a common framework for talking about these issues. That’s what we hoped to provide in this piece.”

Trends in Neurosciences is a leading peer-reviewed journal that publishes articles it invites from leading experts in the field and focuses on topics that are of current interest or under debate in the neuroscience field.

Multisensory, especially audio-visual, work is of importance for several reasons, Maddox said. Being able to see someone talking offers huge performance improvements, which is relevant to making hearing aids that take visual information into account and in studying how people with developmental disorders like autism spectrum disorders or central auditory processing disorders (CAPD) may combine audio-visual information differently.

"The issues are debated because we think studying audio-visual phenomena would benefit from new paradigms, and here we hoped to lay out a framework for those paradigms based on hypotheses of how the brain functions," Maddox said.

Read the full paper onlineThis article was republished with permission of the Institute for Learning & Brain Sciences at the University of Washington

Ross Maddox, Ph.D. was a 2013 General Grand Chapter Royal Arch Masons International award recipient. Hearing Health Foundation would like to thank the Royal Arch Masons for their generous contributions to Emerging Research Grantees working in the area of central auditory processing disorders (CAPD). We appreciate their ongoing commitment to funding CAPD research.

We need your help supporting innovative hearing and balance science through our Emerging Research Grants program. Please make a contribution today.

Print Friendly and PDF

Take It From Me: Auditory Processing Disorder in Class

By Eliza Uberuaga

My legs grow tense as a classmate’s whispers flood my ears. My breath becomes short as another taps his foot against the desk. My stomach lurches as I watch two students turn in their tests. Why can’t I block out the noise? Why can’t I answer the questions faster? Why am I the only one struggling? I must run while they walk, work while they sleep and prepare while they rest.

When I was diagnosed with a learning disability, my parents brought me to the most respected doctors in New York and enrolled me at one of the most prestigious schools in the country. However, that did not cure, fix or help me. Why? Because no doctor, teacher, parent or friend can change the world that tells me I have a problem. I am labeled with Auditory Processing Disorder (APD), characterized as slow and viewed with pity.

I am not asking for sorrowful looks, sympathy hugs or uplifting pep talks. I am asking you to understand that the student in your classroom who needs extra time wasn’t daydreaming during the test. The girl who needs directions to be repeated is listening. The boy who is last to raise his hand has the answer.

These kids likely have APD, a learning disability that slows the comprehension of information. (It is also known as central auditory processing disorder, CAPD.) It is not their hearing that is impaired, but their auditory pathways. Information that is spoken can be difficult to process if said too quickly, in a loud place or in large chunks of speech. Having APD is like listening to a voicemail on a busy street while everyone else is listening to it in a quiet space. While most people can block out that background noise, people with APD hear that noise as if it is the message itself. When given directions, most brains organize the information, as if putting it into filing cabinets. Those with APD take longer to find the filing cabinets, which slows the pace at which they comprehend.

APD affects students in a variety of ways, but students with APD (and most other students) could benefit if we looked at our classrooms the way we look at our world: valuing everyone's uniqueness—in this case, the unique ways in which they learn. Here are some techniques that helped me.

  1. Stimulate the Senses
    In an art history class, we learned about the making of a blind arch. Rather than looking at a diagram, my teacher had four kids (including me) make an arch with our arms. Putting pressure on our formation and watching it collapse taught us how to make the most effective structure. I learned about arches by listening, watching and feeling, as opposed to simply listening and writing.

  2. Teach With Variety
    In a science class, my teacher gave us an outline of the notes, wrote them on the board and lectured us on them—supporting auditory, visual and kinesthetic learners. He allowed each student to retain the information in whatever ways that worked. In this class, no kid was left behind because every kid was supported.

  3. Create a Quiet Learning Place
    In order for all students to be able to focus, especially ones with APD, it is best to minimize all noise when students are working or trying to concentrate. Although it may seem helpful to speak in a quieter voice, for a student with APD, hearing whispers while working can actually be worse than hearing words spoken at normal levels. Although it may seem helpful to speak in a quieter voice, it is best to not talk at all.

I hope that, by writing to teachers and sharing my story, I can help the 10-year-old girl who cries when she gets home from school and tells herself she will never be smart. Although she may not feel intelligent when she goes to the library to finish a test, she must understand that she does not have a problem. She only feels like she has a problem because the world around her is unable to understand her intelligence. The day will come when she feels the way she learns is truly all right, but maybe that day will come sooner for her than it came for me.


Eliza is a high school senior in the Bronx, New York. Originally published on Teaching Tolerance, and is reprinted by permission of the author.

  We need your help in funding the exciting work of hearing and balance scientists. 

To donate today to Hearing Health Foundation and support groundbreaking research, visit hhf.org/name-a-grant.

Print Friendly and PDF

2015 Emerging Research Grants Approved!

By Laura Friedman

Hearing Health Foundation is excited to announce that the 2015 Emerging Research Grants (ERG) have been approved by our Board of Directors, after a rigorous scientific review process. The areas that we are funding for the 2015 cycle are:

  • Central Auditory Processing Disorder (CAPD): Four grants were awarded for innovative research that will increase our understanding of the causes, diagnosis, and treatment of central auditory processing disorder, an umbrella term for a variety of disorders that affect the way the brain processes auditory information. All four of our CAPD grantees are General Grand Chapter Royal Arch Masons International award recipients.

  • Hyperacusis: Two grants were awarded that is focused on innovative research (e.g., animal models, brain imaging, biomarkers, electrophysiology) that will increase our understanding of the mechanisms, causes, diagnosis, and treatments of hyperacusis and severe forms of loudness intolerance. Research that explores distinctions between hyperacusis and tinnitus is of special interest. Both of our Hyperacusis grants were funded by Hyperacuis Research.

  • Ménière’s Disease: Two grants were awarded for innovative research that will increase our understanding of the inner ear and balance disorder Ménière’s disease. One of the grants is funded by The Estate of Howard F. Schum and the other is funded by William Randolph Hearst Foundation through their William Randolph Hearst Endowed Otologic Fellowship.

  • Tinnitus: Two grants were awarded for innovative research that will increase our understanding of the mechanisms, causes, diagnosis, and treatment of tinnitus. One of the grants is funded by the Les Paul Foundation and the other grantee is the recipient of The Todd M. Bader Research Grant of The Barbara Epstein Foundation, Inc.

To learn more about our 2015 ERG grantees and their research proposals and goals, please visit: http://hearinghealthfoundation.org/2015_researchers

Hearing Health Foundation is also currently planning for our 2016 ERG grant cycle. If you're interested in naming a research grant in any discipline within the hearing and balance space, please contact development@hhf.org.

Print Friendly and PDF

Royal Arch Masons Renew Investment in HHF and CAPD Research

By Tara Guastella

I am thrilled to report that for the third year HHF has received a generous gift of $100,000 from the Royal Arch Masons in support of of our 2013 Emerging Researchers studying central auditory processing disorder (CAPD).

CAPD is an umbrella term for a variety of disorders that affect the way the brain processes auditory information. The outer, middle, and inner ear of individuals who have CAPD are usually normal in structure and function (peripheral hearing). But they aren’t able to fully process the information they hear, which leads to difficulties in recognizing and interpreting sounds, especially those that compose speech. It is thought that these difficulties arise from a dysfunction in the central nervous system—the brain.

Individuals who have CAPD have difficulty concentrating when in an environment that is not perfectly quiet or has some "controlled" noise in the background. Understanding a verbal message will also be a problem when trying to listen to a speaker if someone else is talking or if ambient noise is present in the background.

People with CAPD often have to work harder than others just trying to receive auditory information in a meaningful way. It is a very frustrating situation for individuals when they can hear "perfectly" but cannot process auditory speech information in a meaningful way.

One of our Royal Arch Masons–funded researchers, Ross Maddox, Ph.D., is beginning a line of research investigating the specific behavioral effects of audio-visual binding and its processing in the brain. Behavioral tests with brain imaging will be used to investigate the importance of combining information across the visual and auditory senses, and establish relationships in brain activity and behavior, an effort that could inspire new audio-logical therapies.

For over 30 years, the Royal Arch Masons have supported CAPD research efforts, making it a priority to increase funds to this much needed area of research. We are honored that the Royal Arch Masons have chosen HHF as a recipient of this support, and we are inspired by the progress of our Royal Arch Masons–funded Emerging Researchers.

We are incredibly grateful for the continued support of the Royal Arch Masons and thank them for their annual contribution.

Print Friendly and PDF

2011 Grant Recipients Announced

FOR IMMEDIATE RELEASE                                                                                                  
July 26, 2011                                                                                                                      

Trisha Donaldson

DRF Increases grantmaking:  2011 Grant Recipients Announced

Deafness Research Foundation (DRF)’s National Hearing Health Grants Center is excited to announce that it has awarded over $600,000 to 25 outstanding research scientists in the field of hearing and balance science.  For two years in a row, we are excited to announce an increase in our grantmaking.

Each year, DRF awards research grants to young investigators who are exploring new avenues of hearing and balance science. These funds will support research in the following areas:

  • Fundamental Auditory Research – development, genetics, molecular biology, physiology, anatomy, and regeneration biology;

  • Hearing and Balance Restoration – infants, children and adults

    • cochlear implant, auditory hair cell regeneration, and auditory nerve regeneration;

  • Hearing Loss – aging, noise-induced, otosclerosis, ototoxicity, and otitis media;

  • Central Auditory Processing Disorder;

  • Usher Syndrome; and

  • Vestibular and Balance Disorders (dizziness and vertigo, Meniere's disease).

For this year's grants selection, DRF's Council of Scientific Trustees reviewed applications from scientists at renowned research institutions around the U.S.  The selected research projects received detailed peer review for scientific merit and program relevance.  A complete list of the 2011 grant recipients is provided below, including recipients whose research is funded in whole or part by the DRF Centurion Clinical Research Award, the C.H.E.A.R. Endowment Award, Collette Ramsey Baker Research Award, and The Todd M. Bader Research Grant of The Barbara Epstein Foundation, Inc.

Keith E. Bryan, Ph.D., University of Iowa, Carver College of Medicine
Investigating the role of cabp1 in kcnq4 channel modulation

Brenton G. Cooper, Ph.D., Texas Christian University
Lateralization of acoustic perception in Bengalese finches

Regie Lyn P. Santos-Cortez, M.D., Ph.D., Baylor College of Medicine
Identification of genes that predispose to chronic otitis media in the at population of Bolabog, Boracay island, Philippines

Elizabeth Dinces, M.D., M.S., Albert Einstein College of Medicine
Effects of aging on selective attention in complex multi-source sound environments

Carolyn P. Ojano-Dirain, Ph.D., The University of Florida College of Medicine
Prevention of aminoglycoside-induced hearing loss with the mitochondria-targeted

Sung-Ho Huh, Ph.D., Washington University School of Medicine
Role of fgfs in cochlear sensory epithelium

Albena Kantardzhieva, Ph.D., Massachusetts Eye and Ear Infirmary
Defining the interaction partners of major proteins in the hair cell's synaptic ribbon

Shuh-Yow Lin, Ph.D., The University of California, San Diego School of Medicine
Molecular mechanisms of synaptic transmission in hair cells

Debashree Mukherjea, Ph.D., Southern Illinois University School of Medicine
Targeting inflammation in prevention and treatment of noise induced hearing loss

Erin K. Purcell, Ph.D., The University of Michigan, Kresge Hearing Research Institute
A stem cell-seeded nanofibrous scaffold for auditory nerve regeneration

Zlatka P. Stojanova, Ph.D., House Research Institute
Epigenetic regulation of the atoh1 gene

Jie Tang, Ph.D., Creighton University School of Medicine
Creation of a pendrin with both motor and transport functions

Ellen S. Wilch, Ph.D., Michigan State University College of Human Medicine
Identification of cis-regulatory gjb2 and gjb6 elements by chromosome conformation capture and investigation of potential cis-regulatory variants in persons with hearing loss and monoallelic mutation of gjb2

Hsiao-Huei Wu, Ph.D., The University of Southern California, Keck School of Medicine
Regulation of inner ear development by hgf, the nonsyndromic hearing loss gene, dfnb39

Edward L. Bartlett, Ph.D., Purdue University
Cellular bases of temporal auditory processing

Soyoun Cho, Ph.D., Oregon Health & Science University
Dynamics of exo- and endocytosis at hair cells

Frances Hannan, Ph.D., New York Medical College
The role of diaphanous in the auditory cytoskeleton

Michelle Hastings, Ph.D., Rosalind Franklin University of Medicine and Science
Therapeutic correction of ush1c splicing in a mouse model of usher syndrome

Zhengqing Hu, M.D., Ph.D., Wayne State University School of Medicine
Innervation of in vitro-produced hair cell by neural progenitor-derived glutamatergic neurons

Judith S. Kempfle, M.D., Massachusetts Eye and Ear lnfirmary
Influence of bone morphogenetic protein 4 and retinoic acid on differentiation of inner ear stem cells

Neeliyath A. Ramakrishnan, Ph.D., Wayne State University School of Medicine
Molecular interactions of the hair-cell afferent synapse


James E. Saunders, M.D., Dartmouth Hitchcock Medical Center
Genetic hearing loss in remote Nicaraguan families

This research award is funded by the Centurions of the Deafness Research Foundation. DRF has partnered with CORE Grants Program of the American Academy of Otolaryngology-Head and Neck Surgery (AAO-HNS) to offer a one-year DRF Centurion Clinical Research Award (CCRA) for clinical research in hearing and balance science.


Patricia White, Ph.D., University of Rochester School of Medicine and Dentistry
1st year grant recipient
The role of foxo3 in hearing protection

The C.H.E.A.R. endowment was created to support an annual sensory-neural Deafness Research Grant. C.H.E.A.R. (Children Hearing Education and Research) was absorbed into DRF in 1991, and we are very proud to continue their legacy of funding research in sensory-neural deafness.


Kirill Vadimovich Nourski, Ph.D., M.D., University of Iowa Hospitals and Clinics
1st year grant recipient
Temporal processing in human auditory cortex
This research award is made in memory of Deafness Research Foundation’s founder, Collette Ramsey Baker.


Marcello Peppi, Ph.D., Massachusetts Eye and Ear lnfirmary
2nd year grant recipient
Molecular mechanisms of dexamethasone-mediated protection from acoustic trauma
This research award is funded by The Todd M. Bader Research Grant of The Barbara Epstein Foundation, Inc.


Deafness Research Foundation is the leading national source of private funding for research in hearing and balance science.  Research made possible by DRF grants has resulted in dramatic innovations that have increased options for those living with hearing and balance disorders, as well as protected those at risk.  Since our inception in 1958, we have awarded over $26.6 million through more than 2,000 scientific research grants to researchers who are dedicated to exploring new avenues of hearing and balance science.  With the potential of hearing restoration through regeneration biology, the scope of DRF-funded research has expanded enormously.  Since 1972, DRF has funded close to 40 research grants that have been instrumental in the development, evaluation and improvement of cochlear implants.  Approximately, 188,000 implant procedures have been completed worldwide with beneficial results, particularly when the procedure is undertaken in infants.  DRF also publishes the award-winning Hearing HealthMagazine.

Voice (212) 257-6143 • Toll-Free (866) 454-3924 • TTY (888) 435-6104 • Fax (212) 257-6139

Print Friendly and PDF