Research

Ménière's Disease Grantee Featured in Reader's Digest

Credit: Agnieszka Marcinska, Shutterstock

Credit: Agnieszka Marcinska, Shutterstock

Ian Swinburne, Ph.D., a 2018 Ménière's Disease Grant (MDG) recipient, shared his expertise regarding vertigo with Reader's Digest in an article called "What Causes Vertigo? 15 Things Neurologists Wish You Knew" published in March 2018. 

"The spinning, dizzying loss of balance which earmarks vertigo can come without warning," the article opens. Various professionals provide information about its duration, how it feels, and different types.

HHF-funded Dr. Swinburne notes specifically that the inner ear and balance disorder Ménière's disease can cause vertigo. He explains that "[b]outs of vertigo likely arise in patients with Ménière's disease, because the inner ear's tissue tears from too much fluid pressure—causing the ear's internal environment to become abnormal.'" He is currently pursuing a research project to understand the inner ear stabilizes fluid composition, which he believes will help to identify ways to restore or elevate this function to mitigate or cure Ménière's disease.

View the full article from Reader's Digest, here.

Print Friendly and PDF

BLOG ARCHIVE

Improving Diagnostic Test for Ménière’s Disease

By Wafaa Kaf, Ph.D., and Carol Stoll

Electrocochleography (ECochG) is a commonly used assessment of the auditory system, specifically the inner ear and the hearing nerve. ECochG is most often elicited by a brief acoustic stimulus, known as a “click,” at a relatively low repetition rate. It measures two key responses: summating potential (SP) and action potential (AP), which assist in the diagnosis of Ménière’s disease, an inner ear and balance disorder. Previous research has established that individuals with Ménière’s disease are likely to have abnormally large SPs and a large SP/AP ratio. Though click ECochG has great potential to detect Ménière’s disease, it lacks sensitivity, or the ability to correctly identify those with the disease. Only 69% of those with Ménière’s disease are correctly diagnosed, while 31% of those with the disease have normal ECochG results. This lack of accuracy prevents its use as a definitive diagnostic tool. Hearing Health Foundation 2015 Emerging Research Grants recipient, Wafaa Kaf, Ph.D., is researching the use of a novel analysis technique called Continuous Loop Averaging Deconvolution (CLAD) to best improve the sensitivity of ECochG to high click rate for diagnosing Ménière’s disease. Findings were recently published in Ear and Hearing 2017.

kaf-erg.jpg.png

In a recently published paper in Frontiers in Neuroscience, Kaf’s research team shares its findings on the effects of altering the parameters of the acoustic stimulus on ECochG responses to quantify the effect of stimulus rate and duration of the elicited stimuli. Kaf and her research team obtained SP measurements to 500Hz and 2000Hz tone bursts that varied in duration and repetition rate from 20 adult females with normal hearing. CCLAD was used to interpret the tracings elicited by the differing stimuli of tone bursts.

They found that SP amplitude was significantly larger when using the highest stimulus repetition rate. It is believed that the high stimulus repetition rates minimize the neural contributions and mostly reflect hair cell responses, the target of ECochG. In addition, longer duration stimuli is believed to better reflect hair cell involvement while shorter stimuli may be useful in eliciting responses reflective of neural contributions. Lastly, 2000Hz tone bursts produced larger SP amplitude as compared to 500Hz tone bursts. Therefore, 2000Hz tone bursts with a high repetition rate and long duration can be used as parameters to minimize neural contributions to SP measures whereas short duration stimuli can be used if one wishes to asses neural activity.  

The data that Kaf’s team published is a critical initial advancement towards ultimately understanding the SP measurement in diseased ears. Their findings not only provide normative data for tone burst ECochG across stimulus frequencies, stimulus rates, and stimulus durations, but also help others better understand how to improve sensitivity of ECochG for early diagnosis of Ménière’s disease.  

Wafaa Kaf, Ph.D., is a 2015 Emerging Research Grants recipient. Her grant was generously funded by The Estate of Howard F. Schum.

WE NEED YOUR HELP IN FUNDING THE EXCITING WORK OF HEARING AND BALANCE SCIENTISTS. DONATE TODAY TO HEARING HEALTH FOUNDATION AND SUPPORT GROUNDBREAKING RESEARCH: HHF.ORG/DONATE.

Print Friendly and PDF

BLOG ARCHIVE

Mapping Better Hearing

By Vicky Chan

Hearing Health Foundation (HHF) is grateful to the many individuals and organizations who have empowered groundbreaking hearing loss research in the last 60 years. A new interactive map displays every institution in the U.S. where HHF has been fortunate to fund groundbreaking research, yielding outstanding advancements in hearing and balance science. The map also indicates the rates of hearing loss in each state, signaling that additional work is urgently needed.

The colors—light yellow, yellow, green, teal, blue, and purple—represent the rates of hearing loss in each state. The calculations are based off 2015 U.S. Census Data, using estimates from the well-known prevalence of hearing loss among specific demographics. At the lowest end of the range in light yellow, hearing loss affects 13.71% of Colorado’s population. The highest rate was found in Missouri, purple, where the prevalence measured 20.15%. The mean for all states was 18.16%. The numbers signal the significance of hearing loss research.

map-eye-ear-pittsburgh.png

Nearly all of the institutions on the map represent recipients of the Emerging Research Grants (ERG) who have carried out investigations related to tinnitus, hyperacusis, Ménière's disease, Usher syndrome, hearing loss in children, Central Auditory Processing Disorder, and strial atrophy.

A few institutions are home to the work of the Hearing Restoration Project’s (HRP) domestic consortium members, who focus on investigating hair cell regeneration as a cure for hearing loss and tinnitus. They conduct research at Baylor College of Medicine, Harvard Medical School, Oregon Health & Science University, Stanford University, Stowers Institute, University of Maryland, University of Michigan, University of Southern California, University of Washington, and Washington University.

By mid-year, the institutions corresponding to HHF’s newly formed Ménière's Disease Grants (MDG) program will be added to the map.

HHF envisions a world in which no one lives with hearing loss and tinnitus—until this is realized, we’ll do everything we can to put more innovative hearing loss research on the map.

Print Friendly and PDF

BLOG ARCHIVE

Research Aims to Improve Fit and Increase Use of Hearing Aids in U.S.

By University of Maryland Department of Hearing and Speech Sciences

Photo Credit: Shutterstock

Photo Credit: Shutterstock

Although about 28.8 million Americans could benefit from wearing hearing aids, less than a third of that population actually uses them, according to the National Institutes of Health. While cost is a contributing factor, experts say many people with hearing loss choose not to wear hearing aids simply because they have difficulty adjusting to them. Researchers with the University of Maryland Department of Hearing and Speech Sciences (HESP) are hoping to improve those figures by developing better procedures for fitting people with hearing aids for the first time.

“Right now when someone is fitted with hearing aids, the focus is on increasing audibility of sounds reaching the ear,” says HESP Assistant Professor Samira Anderson, Au.D., Ph.D. “However, in order to actually understand what someone is saying, sound has to travel from the ear up to the brain. We’re interested in understanding how wearing a hearing aid affects that process.”

Dr. Anderson, University of Maryland Department of Hearing and Speech Sciences

Dr. Anderson, University of Maryland Department of Hearing and Speech Sciences

In a study published recently in Ear & Hearing, Anderson and colleagues outfitted 37 older adults with mild to severe hearing loss with new, in-the-ear hearing aids donated by Widex USA. The researchers placed electrodes on the surface of the patients’ skin to measure electrical activity produced in response to sound in the auditory cortex and midbrain. They found that the brain’s processing of sounds improved while wearing hearing aids.

“There’s a growing body of research showing that hearing loss can lead to accelerated cognitive decline and isolation as people age,” Anderson says. “My hope is that we can develop enhanced testing procedures that will allow more people to benefit from hearing aids and enjoy a better quality of life.”

The UMD research team plans to continue evaluating the patients in their study during the first six months of hearing aid use. In future studies, researchers hope to investigate the effects of manipulating hearing aid parameters on neural processing. The study was funded by the UMD Department of Hearing and Speech Sciences, Hearing Health Foundation, and the National Institutes of Health (NIDCD Grant T32DC000046).

mason.jpg

Samira Anderson, Au.D., Ph.D., is a 2014 Emerging Research Grants researcher generously funded by the General Grand Chapter Royal Arch Masons International. We thank the Royal Arch Masons for their ongoing support of research in the area of central auditory processing disorder. Read more about Anderson and her research in “A Closer Look,” in the Winter 2014 issue of Hearing Health.

We need your help supporting innovative hearing and balance science through our Emerging Research Grants program. Please make a contribution today.

 
 
Print Friendly and PDF

BLOG ARCHIVE

Studying Difficulties in Sound Localization

CAPD causes one to have trouble with sound localization, specifically in their ability to isolate a sound source in social environments. Individuals with CAPD also have difficulty decoding the meaning of language, even though they do not necessarily have a hearing loss.

Print Friendly and PDF

BLOG ARCHIVE

Prenatal Intervention May Be Necessary for Usher Syndrome Treatment

Recent research published in JARO by Emerging Research Grants (ERG) recipient Michelle Hastings, Ph.D., and colleagues shows that early administration of a genetic targeting treatment is critically important for repairing outer hair cells and thus rescuing hearing in those with genetic disorders like Usher syndrome.

Print Friendly and PDF

BLOG ARCHIVE

New Method Enables Systematic Study of Hair Cell Loss and Regeneration in Chickens

By Carol Stoll

Most forms of hearing loss are permanent because damage to inner ear sensory hair cells is irreversible in mammals, including humans. Mammalian vestibular hair cells have the potential to regenerate albeit at a low rate, but the hair cells of the adult mammalian cochlea are not regenerated. Birds, however, have a robust regenerative response to hair cell damage and are able to restore structure and function in inner ear organs. Consequently, the study of the molecular mechanisms that trigger the onset of avian hair cell regeneration in the balance organs as well as in the cochlea is important and may lead to therapies for hearing loss in humans.

This image shows the undamaged and damaged utricle, an inner ear balance organ, in a chicken. HRP researchers have devised a new method to study the precise timing of hair cell regeneration in chickens using a single surgical application of an ototo…

This image shows the undamaged and damaged utricle, an inner ear balance organ, in a chicken. HRP researchers have devised a new method to study the precise timing of hair cell regeneration in chickens using a single surgical application of an ototoxic drug. Photo by Amanda Janesick, Ph.D.

Past experiments that investigate these regeneration mechanisms in living chickens required multiple injections of a drug to induce hair cell loss, making it difficult to determine the exact timing of the regeneration response. A collaboration of two Hearing Restoration Project researchers, Stefan Heller, Ph.D. and Jennifer Stone, Ph.D., and two talented postdoctoral fellows from their laboratories was recently published in Journal of the Association for Research in Otolaryngology identifying a potential solution to this problem. They developed an experimental framework that uses a single ototoxic drug application, enabling them to study the precise onset and timing of hair cell regeneration in vivo.

Heller, Stone, and colleagues performed their experiments on a total of 75 chickens. At seven days of age, the chickens were anesthetized and underwent surgery to eliminate hair cells in the inner ear organs. During the surgery, streptomycin (an ototoxic antibiotic) was delivered to the chicken’s inner ear. At various time points after the surgery, two sensory organs—the utricle, a vestibular organ; and the basilar papilla, the hearing organ—were dissected, labeled for various cellular markers, and analyzed under a microscope. Hair cells and their surrounding supporting cells were counted and observed for damage. EdU, a marker of cell division, was administered to the chickens to determine whether or not new hair cells were generated by cell division. These techniques enabled the researchers to quantitatively characterize the regenerative response of the utricle after damage.

The results of the study demonstrate that surgical application of a single streptomycin dose is a feasible approach to elicit hair cell loss and regeneration in the chicken utricle and basilar papilla. Just hours after streptomycin delivery, hair cell numbers significantly declined and DNA replication was activated. The team was then able to record specific events of the regeneration process, which get initiated around 12 hours after streptomycin-induced hair cell loss, and continue over the course of several days.

Supporting cells produce new hair cells either by converting into a hair cell (direct transdifferentiation), or by dividing, usually asymmetrically, into a supporting cell and a hair cell.  Throughout this regenerative response, supporting cell numbers and density in the utricle remain relatively constant, suggesting that there is a mechanism that responds to specific levels of damage and coordinates the individual events of the regeneration process.

The study establishes a framework for the refined study of the two modes of hair cell regeneration in the chicken utricle. The next steps of the work will focus on understanding the exact timing and mechanism of coordination of the regeneration response. With only a single application of streptomycin necessary to induce near-complete hair cell loss in hearing and balance organs, the new animal model allows for study of the entire process including initiation, realization, and termination. The fundamental understanding of the avian regenerative mechanisms may lead to future development of therapies for loss of hearing and balance in humans.

Empower the Hearing Restoration Project's life-changing research. If you are able, please make a contribution today.

 
 
Print Friendly and PDF

BLOG ARCHIVE

2018: Hear's to You

By Nadine Dehgan

From every one of us at Hearing Health Foundation (HHF)—scientists, staff, and volunteers—thank you for your support in 2017 and best wishes for 2018.

Because of folks like you, 2017 was an incredible year in which HHF:

  • Increased funding for Hearing Restoration Project & Emerging Research Grants by 35%

  • Launched Ménière's Disease Grants program to better understand & treat this condition

  • Began to fund critical Ototoxic Drug Research so cancer survivors won't have to live with hearing loss as a result of their life-saving treatments

  • Advocated for universal newborn hearing screenings, resulting in the passage of the Early Hearing Detection and Intervention Act

  • Endorsed the Over-the-Counter Hearing Aid Act, which will provide a more affordable and accessible treatment option for adults with mild to moderate hearing loss

  • Created Faces of Hearing Loss to show that hearing and balance disorders affect all of us

  • Received Top Ratings from all Charity Watchdogs including Consumer Reports and BBB

With hearts full of gratitude, we look forward to the work to be done in 2018—HHF’s 60th anniversary year.

Ethan e-appeal v3.jpg

With your help, HHF will continue to fund groundbreaking discoveries for the tens of millions of Americans with hearing loss and tinnitus—among whom is Ethan, 6, born with bilateral (in both ears) hearing loss and fortunate to receive early intervention.

Ethan is a first-grader who loves his sisters, soccer, reading, math, and martial arts. Until a cure for hearing loss is realized, he will be dependent on hearing aids or other treatments.

New scientific findings in 2018—empowered by you—can change the future of hearing loss for Ethan and so many others. I look forward to updating you on progress made.

Print Friendly and PDF

BLOG ARCHIVE

New Grantees Will Advance Understanding of Ménière's Disease

By Lauren McGrath

Hearing Health Foundation's (HHF) newly established Ménière's Disease Grants (MDG) program will significantly advance our understanding of the mechanisms of Ménière's Disease. In 2018, two innovators will have the opportunity to investigate the disorder's diagnosis and treatment.

mdg-logo.png

Ménière's Disease is a disorder of the inner ear that causes episodes of vertigo as a result of fluid that fills the tubes of the inner ear. In addition to dizziness and nausea, Ménière's attacks can cause some loss of hearing in one or both ears and a constant ringing sound. The causes of Ménière's remain unknown and a cure has yet to be identified. The National Institutes of Health estimates that 615,000 individuals in the United States live with the disorder.

Two grants have recently been awarded for 2018 for innovative Ménière's Disease research. Both grantees were also previously funded by HHF’s Emerging Research Grants (ERG) program.

Gail Ishiyama, M.D.

Gail Ishiyama, M.D.

Gail Ishiyama, M.D. of UCLA David Geffen School of Medicine is focusing on cellular and molecular biology of the microvasculature in the macula utricle of patients diagnosed with Ménière’s disease. Her project will provide greater information on the blood labyrinthine barrier and allow for the development of interventions that prevent the progression of hearing loss and stop the disabling vertigo in Ménière’s disease patients.

Ian Swinburne, Ph.D.

Ian Swinburne, Ph.D.

Ian Swinburne, Ph.D. of Harvard Medical School is classifying the endolymphatic duct and sac's cell types and their gene sets using high-throughput single-cell transcriptomics. His work will generate a list of endolymphatic sac cell types and the genes governing their function, which will aid in Ménière's diagnosis (which can be delayed due to the range of fluctuating symptoms) and the development of a targeted drug or gene therapy.

HHF is grateful for the opportunity to fund Drs. Ishiyama and Swinburne. If you are interested in naming a research grant in any discipline within the hearing and balance space, please contact development@hhf.org.

Print Friendly and PDF

BLOG ARCHIVE

The Gap Between Self-Reported Hearing Loss and Treatment Patterns

By Carol Stoll

Hearing loss is one of the most prevalent chronic conditions in the U.S. and has been associated with negative physical, social, cognitive, economic, and emotional consequences. Despite the high prevalence of hearing loss, substantial gaps in the utilization of amplification options, including hearing aids and cochlear implants (CI), have been identified. Harrison Lin, M.D., a 2016 Emerging Research Grants recipient, along with colleagues, recently published a paper in JAMA Otolaryngology–Head & Neck Surgery that investigates the contemporary prevalence, characteristics, and patterns of specialty referral, evaluation, and treatment of hearing difficulty among adults in the U.S.

Unlike this man who is having his hearing tested, a large number of individuals in the U.S. who experience hearing difficulties are not seeking treatment. Photo source: Bundesinnung Hörakustiker, Flickr.

Unlike this man who is having his hearing tested, a large number of individuals in the U.S. who experience hearing difficulties are not seeking treatment. Photo source: Bundesinnung Hörakustiker, Flickr.

The researchers did a cross-sectional analysis of responses from a nationwide representative sample of adults who participated in the 2014 National Health Interview Survey and responded to hearing health questions. The data collected included demographic information as well as self-reported hearing status, functional hearing, laterality (hearing ability in each ear), onset, and primary cause (if known) of the hearing loss. In addition, the team analyzed specific data regarding hearing-related clinician visits, hearing tests, referrals to hearing specialist, and utilization of hearing aids and CIs.

Untreated Hearing Loss Stats.jpg

Overall, 36,690 records were included in the analysis, which extrapolated to an estimated 239.6 million adults in the U.S. Nearly 17 percent indicated their hearing was less than “excellent/good,” ranging from “a little trouble hearing” to “deaf.” Approximately 21 percent of respondents had visited a physician for hearing problems in the preceding five years. Of these, 33 percent were referred to an otolaryngologist and 27 percent were referred to an audiologist. Of the adults who indicated their hearing from “a little trouble hearing” to being “deaf,” 32 percent had never seen a clinician for hearing problems and 28 percent had never had their hearing tested.

The study shows that there are considerable gaps between self-reported hearing loss and patients receiving medical evaluation and recommended treatments for hearing loss. Increased awareness among clinicians regarding the burden of hearing loss, the importance of early detection and medically evaluating hearing loss, and available amplification and CI options can contribute to improved care for individuals with hearing difficulty. Future studies are warranted to further investigate the observed trends of this study.

Harrison W. Lin, M.D., is a 2016 Emerging Research Grants recipient. His grant was generously funded by funded by The Barbara Epstein Foundation, Inc.

We need your help supporting innovative hearing and balance science through our Emerging Research Grants program. Please make a contribution today.

 
 
Print Friendly and PDF

BLOG ARCHIVE