Scott Cronin, M.D.

Scott Cronin, M.D.

Meet the Researcher

Scott Cronin, M.D..jpg

Scott Cronin, M.D. is a resident in the Department of Otolaryngology at the University of Michigan. Cronin completed his undergraduate and medical school training at The Ohio State University. Cronin plans to pursue a career in Otology/Neurotology while continuing investigations of drug-related hearing loss as a clinician-scientist.


The Research

University of Michigan
Ototoxicity of a common drug delivery tool and FDA Orphan Drug, 2-hydroxypropyl-beta-cyclodextrin

Cyclodextrins are a class of molecules that can dissolve cholesterol and other lipids in the body. They are commonly found in household cleaning products, and they are being studied in the treatment of Niemann-Pick disease. Unfortunately, cyclodextrins cause hearing loss and damage to the cochlea at high doses. This project will study the effects of 2-hydroxypropyl-betacyclodextrin (HPBCD) on hearing in a mouse model by injecting this drug under the skin and into the brain. This research will quantify the level of hearing loss and cochlear damage caused by this medication. In addition, the mechanisms of hearing loss and ototoxicity through a variety of techniques will be studied. This novel approach to studying HPBCD may have powerful impacts for patients with Niemann-Pick disease as well as advance our understanding of drug related ototoxicity.

Research area: Hearing loss; Ototoxicity

Long-term goal of research: To develop novel tools for both the prevention and treatment of hearing loss. Cyclodextrins are powerful drugs that can be used to deliver a variety of drugs into the eye, brain, and even the ear. They can also be used to treat lysosomal storage disorders such as Niemann-Pick disease. Unfortunately, at high doses they cause hearing loss and damage the cochlea. The long-term objective is to understand the mechanisms of cyclodextrin induced hearing loss. Hopefully this will lead to novel strategies to ameliorate cyclodextrin damage while retaining its drug-delivery and therapeutic advantages. In addition, new therapeutic uses for HPBCD to treat inner ear disorders will be developed.