Wafaa Kaf, M.D., MS.c., Ph.D.

Wafaa Kaf, M.D., MS.c., Ph.D.

Meet the Researcher

Wafaa Kaf, M.D., MS.c., Ph.D..jpg

Wafaa Kaf, M.D., MS.c., Ph.D., is a professor of Audiology at MSU.

Dr. Kaf’s influences in auditory neurophysiology research have been shaped by several educational experiences as well as research and medical training experiences. Her research is primarily focused on evaluating neurophysiological correlates of normal and abnormal auditory processing to assess hearing thresholds, neural adaptation of the inner ear and auditory brainstem, and the auditory efferent function. Dr. Kaf has several national and international research presentations on these topics. 

Dr. Kaf's grant is funded by The Estate of Howard F. Schum.


The Research

Missouri State University
Novel Ménière’s disease diagnosis: extratympanic simultaneous recording of ECochG and ABR to fast click rates using CLAD technique

Ménière’s disease is mainly diagnosed clinically with no available sensitive objective measures to confirm clinical diagnosis. Current auditory electrophysiologic measures such as standard electrocochleography (ECochG) to a slow click rate has low sensitivity that limits its clinical use. Also, standard ECochG to slow rate cannot measure neural adaptation phenomenon (decrease in the neural firing between the inner hair cells and auditory nerve) that occurs in response to continuous presentation of a fast acoustic stimulus. Although other technique modifications of ECochG such as maximum length sequence to fast rate seem to be promising, several limitations in extracting responses to very fast rates exist with this measure that hinder their clinical use for detection of Ménière’s disease. The new continuous loop averaging deconvolution (CLAD) algorithm is a promising technique to extract overlapping auditory evoked responses to very fast rates, providing valuable information about cochlear and neural function of clinical populations. Thus, the use of CLAD with fast rate ECochG and auditory brainstem response (ABR) has the potential to detect early Ménière’s disease by studying the neural adaptation phenomenon. It is hypothesized that Ménière’s disease may show abnormally fast neural adaptation that may manifest as fast degradation of AP and ABR response amplitudes and prolongation of latency as a function of click rate. The current objectives and the long-term goals of this project are to establish and advance ECochG and ABR measures using CLAD technique to identify the critical rate at which neural adaptation starts as a marker for early diagnosis, differential diagnosis and classification of Ménière’s disease.

Research Area: Ménière’s Disease

Long-term goal: This study and consequent studies will support clinical diagnosis and improve our understanding of the pathophysiology of the disease process. Findings from this project will lead to a series of clinical studies to 1) evaluate neural adaptation phenomenon in early versus late phases of Ménière’s disease as well as unilateral versus bilateral cases, 2) improve the understanding of the pathophysiology and the fluctuation of Ménière’s disease by comparing pattern and critical point of neural adaptation during and following Meniere’s attacks; 3) compare pattern and critical point of neural adaptation among Ménière’s patients of different clinical classification: possible vs. probable, vs. definite vs. certain; 4) distinguish Ménière’s disease from other related pathologies such as migraine associated vertigo, semicircular canal dehiscence and acoustic neuroma, 5) study adaptation phenomenon to tone burst stimuli versus click stimuli for more accurate diagnosis of Ménière’s disease, and 6) monitor the effect of treatment by comparing critical rate of neural adaptation before and after treatment.