2022

Reprogramming and Gene Delivery

Reprogramming and Gene Delivery
Andy Groves, Ph.D. (chair), Baylor College of Medicine
John Brigande, Ph.D., Oregon Health & Science University
Yehoash Raphael, Ph.D., University of Michigan
Segil Lab, University of Southern California

This group will take the lead on transitioning to Phase II, testing candidate genes. They will study the effects of current transcription factor reprogramming cocktails on supporting cell behavior, including the collection of additional transcriptomic and epigenetic data that will be shared with the CSE group. These experiments will be performed in a variety of systems, including a flattened epithelium guinea pig model that shares features with chronic human deafness. The Groves lab will use transgenic mice to detail the effects of the reprogramming cocktails in the organ of Corti. The Brigande lab will continue its work on creating efficient mouse model systems to interrogate candidate genes for sensory hair cell regeneration, as pioneered by testing whether viral delivery of these same reprogramming factors is also efficacious. The Raphael lab will take a similar approach in the guinea pig model, in this case using a virus designed and generated by the Groves and Segil labs. These experiments are part of the group’s broader efforts to develop new methods to deliver molecules and/or genes, for example by endogenous activation of reprogramming factors via CRISPR/Cas-9.

Integrative Analysis

Integrative Analysis
Seth Ament, Ph.D. (co-chair), University of Maryland
Ronna Hertzano, M.D., Ph.D. (co-chair), National Institute on Deafness and Other Communication Disorders
Albert Edge, Ph.D., Mass Eye & Ear
Stefan Heller, Ph.D., Stanford University
David Raible, Ph.D., University of Washington
Jennifer Stone, Ph.D., University of Washington

This group will take the lead on data curation and analysis. A dedicated full-time HRP analyst is working across groups to help collect and process data, thereby facilitating a broader analysis of cell states and trajectories across species. The group will start by annotating hair cell types from all species so that anyone in the field can assess what kind of hair cell their regeneration approaches may produce, while also easing identification of common hair cell genes, which will help the Cross-Species Epigenetics group. Analysis of the hair cells produced in mouse organoids will be performed as an example. The Ament lab will leverage their expertise in bioinformatics, while the Hertzano lab will continue to oversee upkeep of gEAR, with a goal of making it even easier for HRP members to post their new data and for others in the community to analyze those data. The Edge lab will take the lead on the development of organoids as a screening platform for the future. The Heller, Hertzano, Raible, and Stone labs will validate markers by in situ hybridization across species, and all working group members will help direct the analysis.

Cross-Species Epigenetics

Cross-Species Epigenetics
Tatjana Piotrowski, Ph.D. (chair), Stowers Institute for Medical Research
Alain Dabdoub, Ph.D., Sunnybrook Research Institute
Andy Groves, Ph.D., Baylor College of Medicine
Stefan Heller, Ph.D., Stanford University
The Lab of Neil Segil, Ph.D., University of Southern California
Litao Tao, Ph.D., Creighton University

This group will complete the collection of transcriptomic and epigenetic data from systems that regenerate (neonatal mouse, zebrafish, chick) and those that do not (mature mouse and human). In addition, they will begin to perform cross-species comparisons of the behavior of a shared set of hair cell loci across species. Collection of chick data is spearheaded by the Heller lab; the Groves, Segil, and Tao labs are responsible for mouse data; the Piotrowski lab leads work on zebrafish; and the Dabdoub lab will add data from humans. High-quality single-cell RNA-seq, ATAC-seq, and SHARE-seq data from multiple timepoints and conditions will be generated by all member labs.