SwinburneHHF.jpg

Swinburne received his Ph.D. in cell biology from Harvard Medical School, where he now conducts research on systems biology of the inner ear. A 2013 Emerging Research Grants scientist, Swinburne is a 2017 Ménière’s Disease Grants researcher during its inaugural year.

 

The tissue of the inner ear is not just a static barrier. It contains the endolymphatic sac, which acts like a relief valve to control inner ear pressure and fluid. My goal for this project is to understand the working origins of the valve’s structure and activity.

My discovery of the relief valve activity came about through the convergence of three events: a chance recommendation from a British professor to look for the endolymphatic sac; my recovery and study of a previously isolated mutant gene that causes the valve to malfunction, taken from sperm stored in a freezer in Oregon for a decade; and my adaptation of a poison from an Asian snake for imaging the zebrafish, which allows healthy ear physiology to persist while immobilized under a microscope. It was the use of snake poison that led to my first observation of the valve activity.

Puzzles and mysteries have always interested me. In grade school through college, I liked math, chemistry, and physics, probably because their solutions are more forthcoming when compared with biology. But my interest in biology took off as an undergrad, when I worked with my dad’s colleagues in a hospital in Rochester, New York, for two summers. In the infectious diseases lab I became excited about experiments: designing, performing, and troubleshooting them. I realized there was a lot of room for creative solutions in biological research.

After graduate school, I took an embryology course in Woods Hole, Massachusetts, on Cape Cod, observing and experimenting with a wide variety of organisms: sea urchins, squids, frogs, worms, chickens, flies, and zebrafish. I became interested in how the shapes of organs arise during development and how these structures work for healthy physiology. This eventually led to exploring the relationship between structure and function in the ear.

A curiosity about nature came from playing outdoors and hiking with my family as a child. One activity I loved was waterworks: building canals and aqueducts out of sand or dirt and then pouring water through them just to watch it flow. Now I recognize an echo of that play in my study of water pressure and flow within the ear.

Ian Swinburne, Ph.D., is funded through Ménière’s Disease Grants (MDG). Launched in 2017, Hearing Health Foundation’s MDG program supports research focused on advancing our understanding of the inner ear and balance disorder.