National Cancer Institute
High-dimensional analysis of cochlear immunity and cisplatin-induced inflammation
Cisplatin is a life-saving chemotherapy drug but has serious side effects, including causing hearing loss in 40 to 80 percent of cancer patients. Cisplatin enters the cochlea through systemic circulation and gains access to inner ear sensory hair cells after disrupting the protective blood-labyrinth-barrier (BLB). A damaged BLB also means a greater invasion of CD45(+) leukocytes (white blood cells), causing inflammation and, ultimately, hearing loss. We hypothesize that a defined subset of innate immune cells regulates hair cell death by controlling cisplatin-induced inflammatory pathways within the cochlea. Our preliminary data suggest that the cochlea has a different amount of defined leukocytes compared with blood-borne leukocytes. In addition, the data suggest that immune cells that regulate cochlear inflammation may play a role in overall ototoxicity. Understanding cochlear immunity and the interaction of immune cells with other sensory cells will shed light on ototoxicity research and its prevention.