Hearing Restoration Project Papers
Publications resulting from Hearing Restoration Project research funding.
2025
Lush ME, Tsai YY, Chen S, et al. Stem and progenitor cell proliferation are independently regulated by cell type-specific cyclinD genes. Nat Commun. 2025;16:5913. doi:10.1038/s41467-025-60251-0
Miranda Portillo LS, Huang AP, Hosamani IV, Sanchez CN, Heller S, Benkafadar N. Anatomical and molecular insights into avian inner ear sensory hair cell regeneration. Dev Biol. 2025;525:13-25. doi:10.1016/j.ydbio.2025.05.021
Sandler JE, Tsai YY, Chen S, et al. prdm1a drives a fate switch between hair cells of different mechanosensory organs. Nat Commun. 2025;16(1):7662. doi:10.1038/s41467-025-62942-0
Seist R, Copeland JS, Tao L, Groves AK. Rational design of a Lfng-enhancer AAV construct drives specific and efficient gene expression in inner ear supporting cells. Hearing Research. 2025;458:109203. doi:10.1016/j.heares.2025.109203
2024
Beaulieu MO, Thomas ED, Raible DW. Transdifferentiation is temporally uncoupled from progenitor pool expansion during hair cell regeneration in the zebrafish inner ear. Development. 2024;151(15):dev.202944. doi:10.1242/dev.202944
Benkafadar N, Sato MP, Ling AH, et al. An essential signaling cascade for avian auditory hair cell regeneration. Developmental Cell. 2024;59(2):280-291.e5. doi:10.1016/j.devcel.2023.11.028
Brigande JV. Otoferlin gene therapy restores hearing in deaf children. Molecular Therapy. 2024;32(4):859-860. doi:10.1016/j.ymthe.2024.03.020
Gwilliam K, Sperber M, Perry K, et al. A cell type–specific approach to elucidate the role of miR-96 in inner ear hair cells. Front Audiol Otol. 2024;2:1400576. doi:10.3389/fauot.2024.1400576
Hewitt MN, Cruz IA, Raible DW. Spherical harmonics analysis reveals cell shape-fate relationships in zebrafish lateral line neuromasts. Development. 2024;151(2):dev.202251. doi:10.1242/dev.202251
Liu Y, Yang L, Singh S, et al. Combinatorial Atoh1, Gfi1, Pou4f3, and Six1 gene transfer induces hair cell regeneration in the flat epithelium of mature guinea pigs. Hearing Research. 2024;441:108916. doi:10.1016/j.heares.2023.108916
Maraslioglu-Sperber A, Blanc F, Heller S, Benkafadar N. Hyperosmotic sisomicin infusion: a mouse model for hearing loss. Sci Rep. 2024;14:15903. doi:10.1038/s41598-024-66635-4
McGovern MM, Ghosh S, Dupuis C, Walters BJ, Groves AK. Reprogramming with Atoh1, Gfi1, and Pou4f3 promotes hair cell regeneration in the adult organ of Corti. PNAS Nexus. 2024;3(10):pgae445. doi:10.1093/pnasnexus/pgae445
McGovern MM, Hosamani IV, Niu Y, Nguyen KY, Zong C, Groves AK. Expression of Atoh1, Gfi1, and Pou4f3 in the mature cochlea reprograms nonsensory cells into hair cells. Proceedings of the National Academy of Sciences. 2024;121(5):e2304680121. doi:10.1073/pnas.2304680121
Sato MP, Benkafadar N, Heller S. Hair cell regeneration, reinnervation, and restoration of hearing thresholds in the avian hearing organ. Cell Reports. 2024;43(3):113822. doi:10.1016/j.celrep.2024.113822
Sato MP, Huang AP, Heller S, Benkafadar N. Protocol for in vivo elimination of avian auditory hair cells, multiplexed mRNA detection, immunohistochemistry, and S-phase labeling. STAR Protocols. 2024;5(2):103118. doi:10.1016/j.xpro.2024.103118
Shi T, Kim Y, Llamas J, et al. Long-range Atoh1 enhancers maintain competency for hair cell regeneration in the inner ear. Proceedings of the National Academy of Sciences. 2024;121(51):e2418098121. doi:10.1073/pnas.2418098121
2023
Cox BC, Brigande JV, Walters BJ. Genetic and Epigenetic Strategies for Promoting Hair Cell Regeneration in the Mature Mammalian Inner Ear. In: Warchol ME, Stone JS, Coffin AB, Popper AN, Fay RR, eds. Hair Cell Regeneration. Springer Handbook of Auditory Research. Springer International Publishing; 2023:195-229. doi:10.1007/978-3-031-20661-0_8
Kalra G, Lenz D, Abdul-Aziz D, et al. Cochlear organoids reveal transcriptional programs of postnatal hair cell differentiation from supporting cells. Cell Reports. 2023;42(11):113421. doi:10.1016/j.celrep.2023.113421
Nguyen JD, Llamas J, Shi T, Crump JG, Groves AK, Segil N. DNA methylation in the mouse cochlea promotes maturation of supporting cells and contributes to the failure of hair cell regeneration. Proceedings of the National Academy of Sciences. 2023;120(33):e2300839120. doi:10.1073/pnas.2300839120
Shi T, Beaulieu MO, Saunders LM, et al. Single-cell transcriptomic profiling of the zebrafish inner ear reveals molecularly distinct hair cell and supporting cell subtypes. Elife. 2023;12:e82978. doi:10.7554/eLife.82978
Wang X, Llamas J, Trecek T, et al. SoxC transcription factors shape the epigenetic landscape to establish competence for sensory differentiation in the mammalian organ of Corti. Proceedings of the National Academy of Sciences. 2023;120(34):e2301301120. doi:10.1073/pnas.2301301120
2022
Iyer AA, Hosamani I, Nguyen JD, et al. Cellular reprogramming with ATOH1, GFI1, and POU4F3 implicate epigenetic changes and cell-cell signaling as obstacles to hair cell regeneration in mature mammals. eLife. 2022;11:e79712. doi:10.7554/eLife.79712
Janesick A, Scheibinger M, Benkafadar N, Kirti S, Heller S. Avian auditory hair cell regeneration is accompanied by JAK/STAT-dependent expression of immune-related genes in supporting cells. Development. 2022;149(8):dev.200113. doi:10.1242/dev.200113
Janesick A, Scheibinger M, Heller S. Molecular Tools to Study Regeneration of the Avian Cochlea and Utricle. In: Groves AK, ed. Developmental, Physiological, and Functional Neurobiology of the Inner Ear. Neuromethods. Springer US; 2022:77-97. doi:10.1007/978-1-0716-2022-9_5
Hertzano R, Mahurkar A. Advancing discovery in hearing research via biologist-friendly access to multi-omic data. Hum Genet. 2022;141(3-4):319-322. doi:10.1007/s00439-022-02445-w
Scheibinger M, Janesick A, Benkafadar N, Ellwanger DC, Jan TA, Heller S. Cell-type identity of the avian utricle. Cell Reports. 2022;40(13). doi:10.1016/j.celrep.2022.111432
Trpchevska N, Freidin MB, Broer L, et al. Genome-wide association meta-analysis identifies 48 risk variants and highlights the role of the stria vascularis in hearing loss. The American Journal of Human Genetics. 2022;109(6):1077-1091. doi:10.1016/j.ajhg.2022.04.010
2021
Benkafadar N, Janesick A, Scheibinger M, Ling AH, Jan TA, Heller S. Transcriptomic characterization of dying hair cells in the avian cochlea. Cell Reports. 2021;34(12). doi:10.1016/j.celrep.2021.108902
BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature. 2021;598(7879):86-102. doi:10.1038/s41586-021-03950-0
Hertzano R, Gwilliam K, Rose K, Milon B, Matern MS. Cell Type–Specific Expression Analysis of the Inner Ear: A Technical Report. The Laryngoscope. 2021;131(S5):S1-S16. doi:10.1002/lary.28765
Janesick A, Scheibinger M, Benkafadar N, Kirti S, Ellwanger DC, Heller S. Cell-type identity of the avian cochlea. Cell Reports. 2021;34(12):108900. doi:10.1016/j.celrep.2021.108900
Kubota M, Scheibinger M, Jan TA, Heller S. Greater epithelial ridge cells are the principal organoid-forming progenitors of the mouse cochlea. Cell Reports. 2021;34(3). doi:10.1016/j.celrep.2020.108646
Kubota M, Heller S. Murine cochlear cell sorting and cell-type-specific organoid culture. STAR Protocols. 2021;2(3):100645. doi:10.1016/j.xpro.2021.100645
Milon B, Shulman ED, So KS, et al. A cell-type-specific atlas of the inner ear transcriptional response to acoustic trauma. Cell Reports. 2021;36(13). doi:10.1016/j.celrep.2021.109758
Orvis J, Gottfried B, Kancherla J, et al. gEAR: Gene Expression Analysis Resource portal for community-driven, multi-omic data exploration. Nat Methods. 2021;18(8):843-844. doi:10.1038/s41592-021-01200-9
Tao L, Yu HV, Llamas J, et al. Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration. Developmental Cell. 2021;56(17):2471-2485. doi:10.1016/j.devcel.2021.07.003
Yao Z, Liu H, Xie F, et al. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature. 2021;598(7879):103-110. doi:10.1038/s41586-021-03500-8
Yu HV, Tao L, Llamas J, et al. POU4F3 pioneer activity enables ATOH1 to drive diverse mechanoreceptor differentiation through a feed-forward epigenetic mechanism. PNAS. 2021;118(29). doi:10.1073/pnas.2105137118
2020
Gnedeva K, Wang X, McGovern MM, et al. Organ of Corti size is governed by Yap/Tead-mediated progenitor self-renewal. PNAS. 2020;117(24):13552-13561. doi:10.1073/pnas.2000175117
Kolla L, Kelly MC, Mann ZF, et al. Characterization of the development of the mouse cochlear epithelium at the single cell level. Nat Commun. 2020;11(1):1-16. doi:10.1038/s41467-020-16113-y
Wan L, Lovett M, Warchol ME, Stone JS. Vascular endothelial growth factor is required for regeneration of auditory hair cells in the avian inner ear. Hear Res. 2020;385:107839. doi:10.1016/j.heares.2019.107839
2019
Dunbar LA, Patni P, Aguilar C, et al. Clarin-2 is essential for hearing by maintaining stereocilia integrity and function. EMBO Molecular Medicine. 2019;11(9):e10288. doi:10.15252/emmm.201910288
Zhu Y, Scheibinger M, Ellwanger DC, et al. Single-cell proteomics reveals changes in expression during hair-cell development. Kelley MW, ed. eLife. 2019;8:e50777. doi:10.7554/eLife.50777
2017
Brigande JV. Hearing in the mouse of Usher. Nat Biotechnol. 2017;35(3):216-218. doi:10.1038/nbt.3815
2016
Abdolazimi Y, Stojanova Z, Segil N. Selection of cell fate in the organ of Corti involves the integration of Hes/Hey signaling at the Atoh1 promoter. Development. 2016;143(5):841-850. doi:10.1242/dev.129320
Geng R, Noda T, Mulvaney JF, Lin VYW, Edge ASB, Dabdoub A. Comprehensive Expression of Wnt Signaling Pathway Genes during Development and Maturation of the Mouse Cochlea. Riley BB, ed. PLoS ONE. 2016;11(2):e0148339. doi:10.1371/journal.pone.0148339
Kempfle JS, Turban JL, Edge ASB. Sox2 in the differentiation of cochlear progenitor cells. Sci Rep. 2016;6. doi:10.1038/srep23293
Maass JC, Gu R, Cai T, et al. Transcriptomic Analysis of Mouse Cochlear Supporting Cell Maturation Reveals Large-Scale Changes in Notch Responsiveness Prior to the Onset of Hearing. Reh TA, ed. PLoS ONE. 2016;11(12):e0167286. doi:10.1371/journal.pone.0167286
Suli A, Pujol R, Cunningham DE, et al. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells. J Cell Sci. 2016;129(11):2250-2260. doi:10.1242/jcs.182592
2015
Maass JC, Gu R, Basch ML, et al. Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea. Front Cell Neurosci. 2015;9. doi:10.3389/fncel.2015.00110
Romero-Carvajal A, Navajas Acedo J, Jiang L, et al. Regeneration of Sensory Hair Cells Requires Localized Interactions between the Notch and Wnt Pathways. Developmental Cell. 2015;34(3):267-282. doi:10.1016/j.devcel.2015.05.025
Stojanova ZP, Kwan T, Segil N. Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea. Development. 2015;142(20):3529-3536. doi:10.1242/dev.126763
Waldhaus J, Durruthy-Durruthy R, Heller S. Quantitative High-Resolution Cellular Map of the Organ of Corti. Cell Reports. 2015;11(9):1385-1399. doi:10.1016/j.celrep.2015.04.062
Tao L, Segil N. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis in sensory hair cells in the mouse inner ear. Front Cell Neurosci. 2015;9. doi:10.3389/fncel.2015.00190
Tong L, Strong MK, Kaur T, et al. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons. J Neurosci. 2015;35(20):7878-7891. doi:10.1523/JNEUROSCI.2179-14.2015
2014
Micucci JA, Layman WS, Hurd EA, et al. CHD7 and retinoic acid signaling cooperate to regulate neural stem cell and inner ear development in mouse models of CHARGE syndrome. Human Molecular Genetics. 2014;23(2):434-448. doi:10.1093/hmg/ddt435
