Hearing Restoration Project Papers

Here is a selection of recent publications resulting from Hearing Restoration Project research.

2025

  • Miranda Portillo LS, Huang AP, Hosamani IV, Sanchez CN, Heller S, Benkafadar N. Anatomical and molecular insights into avian inner ear sensory hair cell regeneration. Dev Biol. 2025;525:13-25. doi:10.1016/j.ydbio.2025.05.021

  • Seist R, Copeland JS, Tao L, Groves AK. Rational design of a Lfng-enhancer AAV construct drives specific and efficient gene expression in inner ear supporting cells. Hearing Research. 2025;458:109203. doi:10.1016/j.heares.2025.109203

2024

  • Beaulieu MO, Thomas ED, Raible DW. Transdifferentiation is temporally uncoupled from progenitor pool expansion during hair cell regeneration in the zebrafish inner ear. Development. 2024;151(15):dev.202944. doi:10.1242/dev.202944

  • Benkafadar N, Sato MP, Ling AH, et al. An essential signaling cascade for avian auditory hair cell regeneration. Developmental Cell. 2024;59(2):280-291.e5. doi:10.1016/j.devcel.2023.11.028

  • Brigande JV. Otoferlin gene therapy restores hearing in deaf children. Molecular Therapy. 2024;32(4):859-860. doi:10.1016/j.ymthe.2024.03.020

  • Gwilliam K, Sperber M, Perry K, et al. A cell type–specific approach to elucidate the role of miR-96 in inner ear hair cells. Front Audiol Otol. 2024;2:1400576. doi:10.3389/fauot.2024.1400576

  • Hewitt MN, Cruz IA, Raible DW. Spherical harmonics analysis reveals cell shape-fate relationships in zebrafish lateral line neuromasts. Development. 2024;151(2):dev.202251. doi:10.1242/dev.202251

  • Liu Y, Yang L, Singh S, et al. Combinatorial Atoh1, Gfi1, Pou4f3, and Six1 gene transfer induces hair cell regeneration in the flat epithelium of mature guinea pigs. Hearing Research. 2024;441:108916. doi:10.1016/j.heares.2023.108916

  • Maraslioglu-Sperber A, Blanc F, Heller S, Benkafadar N. Hyperosmotic sisomicin infusion: a mouse model for hearing loss. Sci Rep. 2024;14:15903. doi:10.1038/s41598-024-66635-4

  • McGovern MM, Ghosh S, Dupuis C, Walters BJ, Groves AK. Reprogramming with Atoh1, Gfi1, and Pou4f3 promotes hair cell regeneration in the adult organ of Corti. PNAS Nexus. 2024;3(10):pgae445. doi:10.1093/pnasnexus/pgae445

  • McGovern MM, Hosamani IV, Niu Y, Nguyen KY, Zong C, Groves AK. Expression of Atoh1, Gfi1, and Pou4f3 in the mature cochlea reprograms nonsensory cells into hair cells. Proceedings of the National Academy of Sciences. 2024;121(5):e2304680121. doi:10.1073/pnas.2304680121

  • Sato MP, Benkafadar N, Heller S. Hair cell regeneration, reinnervation, and restoration of hearing thresholds in the avian hearing organ. Cell Reports. 2024;43(3):113822. doi:10.1016/j.celrep.2024.113822

  • Sato MP, Huang AP, Heller S, Benkafadar N. Protocol for in vivo elimination of avian auditory hair cells, multiplexed mRNA detection, immunohistochemistry, and S-phase labeling. STAR Protocols. 2024;5(2):103118. doi:10.1016/j.xpro.2024.103118

  • Shi T, Kim Y, Llamas J, et al. Long-range Atoh1 enhancers maintain competency for hair cell regeneration in the inner ear. Proceedings of the National Academy of Sciences. 2024;121(51):e2418098121. doi:10.1073/pnas.2418098121

2023

  • Kalra G, Lenz D, Abdul-Aziz D, et al. Cochlear organoids reveal transcriptional programs of postnatal hair cell differentiation from supporting cells. Cell Reports. 2023;42(11):113421. doi:10.1016/j.celrep.2023.113421

  • Nguyen JD, Llamas J, Shi T, Crump JG, Groves AK, Segil N. DNA methylation in the mouse cochlea promotes maturation of supporting cells and contributes to the failure of hair cell regeneration. Proceedings of the National Academy of Sciences. 2023;120(33):e2300839120. doi:10.1073/pnas.2300839120

  • Shi T, Beaulieu MO, Saunders LM, et al. Single-cell transcriptomic profiling of the zebrafish inner ear reveals molecularly distinct hair cell and supporting cell subtypes. Elife. 2023;12:e82978. doi:10.7554/eLife.82978

  • Tang PC, Chen L, Singh S, et al. Early Wnt signaling activation promotes inner ear differentiation via cell caudalization in mouse stem cell-derived organoids. Stem Cells. 2023;41(1):26-38. doi:10.1093/stmcls/sxac071

  • Wang X, Llamas J, Trecek T, et al. SoxC transcription factors shape the epigenetic landscape to establish competence for sensory differentiation in the mammalian organ of Corti. Proceedings of the National Academy of Sciences. 2023;120(34):e2301301120. doi:10.1073/pnas.2301301120

2022

  • Iyer AA, Hosamani I, Nguyen JD, et al. Cellular reprogramming with ATOH1, GFI1, and POU4F3 implicate epigenetic changes and cell-cell signaling as obstacles to hair cell regeneration in mature mammals. eLife. 2022;11:e79712. doi:10.7554/eLife.79712

  • Janesick A, Scheibinger M, Benkafadar N, Kirti S, Heller S. Avian auditory hair cell regeneration is accompanied by JAK/STAT-dependent expression of immune-related genes in supporting cells. Development. 2022;149(8):dev.200113. doi:10.1242/dev.200113

  • Janesick A, Scheibinger M, Heller S. Molecular Tools to Study Regeneration of the Avian Cochlea and Utricle. In: Groves AK, ed. Developmental, Physiological, and Functional Neurobiology of the Inner Ear. Neuromethods. Springer US; 2022:77-97. doi:10.1007/978-1-0716-2022-9_5

  • Scheibinger M, Janesick A, Benkafadar N, Ellwanger DC, Jan TA, Heller S. Cell-type identity of the avian utricle. Cell Reports. 2022;40(13). doi:10.1016/j.celrep.2022.111432

  • Scheibinger M, Janesick A, Diaz GH, Heller S. Immunohistochemistry and In Situ mRNA Detection Using Inner Ear Vibratome Sections. In: Groves AK, ed. Developmental, Physiological, and Functional Neurobiology of the Inner Ear. Neuromethods. Springer US; 2022:41-58. doi:10.1007/978-1-0716-2022-9_3

2021

  • Tao L, Yu HV, Llamas J, et al. Enhancer decommissioning imposes an epigenetic barrier to sensory hair cell regeneration. Developmental Cell. 2021;56(17):2471-2485. doi:10.1016/j.devcel.2021.07.003